In this study, citric acid-functionalized FeO magnetic nanoparticles (CA-MNPs) were prepared via a coprecipitation method and were fully characterized. Doxorubicin (DOX) and melittin (MEL), as anticancer agents, were loaded onto CA-MNPs surface through electrostatic interactions with the aim to achieve an effective co-delivery system for cancer therapy. The loading efficiency and in vitro release profiles of DOX and MEL were investigated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The MS/MS step was performed in the selected reaction monitoring (SRM) mode which enabled simultaneous quantification of the analytes with high specificity and sensitivity. An excellent loading efficiency of about 100% was achieved for DOX and MEL in a drug to nanocarrier ratio of 1:10. The in vitro release of the drugs from CA-MNPs was evaluated for 8 h at pH 7.4, 5.5 and 4.5. The experimental results revealed that the release behaviour of both of the anticancer agents was strongly pH-dependent and significantly enhanced at pH 4.5. The in vitro MTT assay on MCF-7 breast cancer cell line exhibited a synergistic effect between DOX and MEL which led to substantially greater antitumor efficacy, compared to single administration of these anticancer agents at equivalent doses. The results indicated that the co-delivery system of (DOX/MEL)-loaded CA-MNPs is highly capable to be used in magnetically targeted cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1080/21691401.2018.1536063DOI Listing

Publication Analysis

Top Keywords

vitro release
12
anticancer agents
12
dox mel
12
magnetic nanoparticles
8
co-delivery system
8
cancer therapy
8
loading efficiency
8
synergistic co-delivery
4
co-delivery doxorubicin
4
doxorubicin melittin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!