Phosphatidylinositide 3-kinases (PI3Ks) are intracellular signal transducer enzymes that recruit protein kinase B (aka Akt) to the cell membrane, the subsequent activation of which regulates many cellular functions. PI3K/Akt activity is up-regulated within mesocorticolimbic structures in animal models of alcoholism, but less is known regarding PI3K/Akt activity in animal models of cocaine addiction. Given that prefrontal cortex (PFC) is grossly dysregulated in addiction, we studied how cocaine affects protein indices of PFC PI3K/Akt activity in rat and mouse models and examined the relevance of PI3K activity for cocaine-related learning. Immunoblotting of mouse medial PFC at 3 weeks withdrawal from a cocaine-sensitization regimen (seven injections of 30 mg/kg, intraperitoneal [IP]) revealed increased kinase activity, as did immunoblotting of tissue from the ventral PFC of rats with a history of long-access intravenous cocaine self-administration (0.25 mg/0.1 mL infusion; 10 days of 6 h/d cocaine access). Interestingly, increased Akt phosphorylation was observed in rat ventromedial PFC at both 3- and 30-day withdrawal only in animals re-exposed to cocaine-associated cues. A conditioned place-preference paradigm in mice and a cue-elicited drug-seeking test in rats were conducted to determine the functional relevance for elevated PI3K activity for addiction-related behavior. In both cases, an intra-PFC infusion of the PI3K inhibitor wortmannin (50μM) reduced drug-seeking behavior. Taken together, this cross-species, interdisciplinary, study provides convincing evidence that cocaine history produces an enduring increase in PI3K/Akt-dependent signaling within the more ventral aspect of the PFC that is relevant to behavioral reactivity to drug-associated cues/contexts. As such, PI3K inhibitors may well serve as an effective strategy for reducing drug cue reactivity and craving in cocaine addiction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849400 | PMC |
http://dx.doi.org/10.1111/adb.12696 | DOI Listing |
In Vitro Cell Dev Biol Anim
January 2025
Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.
The Warburg effect, a common feature of solid tumors, rewires the metabolism and promotes growth, survival, proliferation, and long-term maintenance in gastric cancer (GC). We performed in vitro and in vivo studies of the pathogenesis of GC to investigate the effects and mechanism of LINC01224 in this cancer. qRT-PCR was used to measure the expression of LINC01224 or miR-486-5p in GC cells, and the expression of LINC01224 in GC tissues by FISH (Fluorescence in situ hybridization) analysis was evaluated.
View Article and Find Full Text PDFCell Mol Neurobiol
January 2025
Pharmacy Department, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
Environ Toxicol
January 2025
Cardiovascular Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
The cardiovascular risks linked to PM include calcification in both vasculature and myocardial tissues, leading to structural changes and functional decline. Through the selection of a clinically proven endogenous agent, sodium thiosulfate (STS), capable of addressing PM related cardiac abnormalities, we not only address the absence of effective solutions to mitigate PM toxicity, but also provide evidence for the repurposing potential of STS in ameliorating PM induced cardiac damage. Female Wistar rats were exposed to PM (250 μg/m) for 3 h daily for 21 days.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.
Background: Epidemiological investigations have revealed a significant association between alcohol consumption and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Nevertheless, the potential mechanisms are still inadequately revealed. This research aimed to investigate the impact of alcohol on CP/CPPS using an animal model and to elucidate the underlying mechanisms.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Neurosurgery West China Hospital, Sichuan University, Chengdu, China.
Resveratrol, a polyphenolic compound known for its diverse biological activities, has demonstrated multiple pharmacological effects, including anti-inflammatory, anti-aging, anti-diabetic, anti-cancer, and cardiovascular protective properties. Recent studies suggest that these effects are partly mediated through the regulation of macrophage polarization, wherein macrophages differentiate into pro-inflammatory M1 or anti-inflammatory M2 phenotypes. Our review highlights how resveratrol modulates macrophage polarization through various signaling pathways to achieve therapeutic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!