The Role of Lanthanum in a Nickel Oxide-Based Inverted Perovskite Solar Cell for Efficiency and Stability Improvement.

ChemSusChem

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan.

Published: January 2019

A high-performing inverted perovskite solar cell (PSC) always relies on the hole transporting layer (HTL) quality and its interfaces. This work investigates the impact of La incorporation within the NiO matrix for defects passivation, thus leading to high charge extraction ability and stability without compromising its power conversion efficiency. In the presence of La, the La-NiO quality is clearly improved; without the formation of pinholes. In addition, the inclusion of La alters the energy band alignment; consequently, enhancing the hole transportation and widening the V (>1 V), as compared to the pristine NiO . The beneficial effect of La was further revealed through the photoluminescence measurement and density of states (DOS) analysis, in which trap states are passivated by La. More importantly, the perovskite solar cell, with La-NiO as the HTL, exhibits 21 % enhancement in efficiency and a remarkable stability that is greater than that of pristine NiO . This also unlocks an opportunity for commercialization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201802231DOI Listing

Publication Analysis

Top Keywords

perovskite solar
12
solar cell
12
inverted perovskite
8
pristine nio
8
role lanthanum
4
lanthanum nickel
4
nickel oxide-based
4
oxide-based inverted
4
cell efficiency
4
efficiency stability
4

Similar Publications

Stress Relaxation for Lead Iodide Nucleation in Efficient Perovskite Solar Cells.

Adv Mater

January 2025

Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.

Porous lead iodide (PbI) film is crucial for the complete reaction between PbI and ammonium salts in sequential-deposition technology so as to achieve high crystallinity perovskite film. Herein, it is found that the tensile stress in tin (IV) oxide (SnO) electron transport layer (ETL) is a key factor influencing the morphology and crystallization of PbI films. Focusing on this, lithium trifluoromethanesulfonate (LiOTf) is used as an interfacial modifier in the SnO/PbI interface to decrease the tensile stress to reduce the necessary critical Gibbs free energy for PbI nuclei formation.

View Article and Find Full Text PDF

High defect concentrations at the interfaces are the basis of charge extraction losses and instability in perovskite solar cells. Surface engineering with organic cations is a common practice to solve this issue. However, the full implications of the counteranions of these cations for device functioning are often neglected.

View Article and Find Full Text PDF

Mechanically Resilient and Highly Efficient Flexible Perovskite Solar Cells with Octylammonium Acetate for Surface Adhesion and Stress Relief.

ACS Nano

January 2025

State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Faculty of Integrated Circuit, Xidian University, 710071 Xi'an, China.

Flexible perovskite solar cells (FPSCs) have advanced significantly because of their excellent power-per-weight performance and affordable manufacturing costs. The unsatisfactory efficiency and mechanical stability of FPSCs are bottleneck challenges that limit their application. Here, we explore the use of octylammonium acetate (OAAc) with a long, intrinsic, flexible molecular chain on perovskite films for surface adhesion and mechanical releasing.

View Article and Find Full Text PDF

Halide perovskites are a class of materials with excellent potential for solar cell applications due to their excellent optical and electronic properties. In this study, strain-dependent physical properties of SrNBr perovskites are investigated and theoretical results are reported here. The structural properties indicate that SrNBr has a cubic structure.

View Article and Find Full Text PDF

Tailored Colloidal Shapes in Precursor Solutions for Efficient Blade-Coated Perovskite Solar Modules.

Adv Mater

January 2025

Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Metal halide perovskite solar cells (PSCs) have emerged as one of the most promising candidates for next-generation photovoltaic technologies. However, perovskite films deposited by blade-coating usually exhibit inferior film morphology compared to those fabricated by spin-coating, which hinders the power conversion efficiency (PCE) and stability of the scalable perovskite solar modules (PSMs). Herein, ellipsoidal colloids are tailored in the perovskite precursor solution by incorporating perovskite colloids and polymer additives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!