Glutaric acid is a promising alternative chemical to phthalate plasticizer since it can be produced by the bioconversion of lysine. Though, recent studies have enabled the high-yield production of its precursor, 5-aminovaleric acid (AMV), glutaric acid production via the AMV pathway has been limited by the need for cofactors. Introduction of NAD(P)H oxidase (Nox) with GabTD enzyme remarkably diminished the demand for oxidized nicotinamide adenine dinucleotide (NAD ). Supply of oxygen through vigorous shaking had a significant effect on the conversion of AMV with a reduced requirement of NAD . A high conversion rate was achieved in Nox coupled GabTD reaction under optimized expression vector, terrific broth (TB), and pH 8.5 at high cell density. Supplementary expression of GabD resulted in the production of 353 ± 35 mM glutaric acid with 88.3 ± 8.7% conversion from 400 mM AMV. Moreover, the reaction with a higher concentration of AMV could produce 528 ± 21 mM glutaric acid with 66.0 ± 2.7% conversion. In addition, the co-biotransformation strategy of GabTD and DavBA whole cells could produce 282 mM glutaric acid with 70.8% conversion from lysine, compared to the 111 mM glutaric acid yield from the combined GabTD-DavBA system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.26869DOI Listing

Publication Analysis

Top Keywords

glutaric acid
28
acid
8
glutaric
7
amv
5
conversion
5
enhanced production
4
production glutaric
4
acid nadh
4
nadh oxidase
4
oxidase gabd-reinforced
4

Similar Publications

Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.

View Article and Find Full Text PDF

Background: Burn-hemorrhagic shock combined injury, a severe condition causing complex stress responses and metabolic disturbances that significantly affect clinical outcomes in both military and civilian settings, was modeled in swine to investigate the associated metabolomic and proteomic changes and identify potential biomarkers for disease prognosis.

Methods: Eight clean-grade adult male Landrace pigs (4-5 months, average weight 60-70 kg) were used to model burn-hemorrhagic shock combined injury. Serum samples collected at 0 h and 2 h post-injury were analyzed using metabolomic and proteomic measurements.

View Article and Find Full Text PDF

Objectives: The aim of this study was to describe signalment, clinicopathological findings, management practices and the occurrence of comorbidities in feline diabetes mellitus (DM) in Germany.

Methods: This was a cross-sectional study using questionnaires and laboratory submissions to a commercial laboratory, Antech Lab Germany, between May 2021 and July 2022. Inclusion criteria were diagnosis of DM by the attending veterinarian and submission of a completed questionnaire besides blood samples.

View Article and Find Full Text PDF

Background/objectives: Clofazimine (CFZ) is a Biopharmaceutics Classification System (BCS) II drug introduced in the US market in 1986 for the treatment of leprosy. However, CFZ was later withdrawn from the market due to its extremely low aqueous solubility and low absorption. In the literature, the intrinsic solubility of CFZ has been estimated to be <0.

View Article and Find Full Text PDF

Baicalin alleviates intestinal inflammation and microbial disturbances by regulating Th17/Treg balance and enhancing Lactobacillus colonization in piglets.

J Anim Sci Biotechnol

December 2024

State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.

Background: Intestinal inflammation is a common and serious health problem in piglet production, especially enteritis caused by pathogenic Escherichia coli (E. coli). This condition often leads to high mortality, slow weight gain, and significant economic losses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!