Purpose: T -weighted lesional imaging is most commonly performed using inversion recovery turbo spin echoes. At 7 T, however, this acquisition is limited for specific absorption rate and resolution. This work describes and implements a method to generate CSF-suppressed T -weighted imaging.
Methods: The strategy uses a driven equilibrium spin-echo preparation within an inversion recovery with multiple 3D gradient-echo imaging blocks. Images are combined using the self-normalization approach, which achieves CSF suppression through optimized timing of individual blocks and minimizes sources of variation due to coil receptivity, T , and proton density. Simulations of the magnetization-prepared fluid-attenuated inversion recovery gradient-echo (MPFLAGRE) method over T and T relaxation values are performed, and in vivo demonstrations using an 8 2 transceiver array in healthy controls are shown.
Results: The specific absorption rate of the calculated MPFLAGRE sequence is 11.1 ± 0.5 W (n = 5 volunteers), which is 74 ± 2% of the US Food and Drug Administration guidelines. This method acquires both contrasts for CSF suppression with detection of long T components and T -weighted imaging in a single acquisition. In healthy controls, the former contrast generates increased signal in the cortical rim and ependyma. A comparison is shown with a conventional 3D SPACE fluid-attenuated inversion recovery acquisition, and sensitivity to pathology is demonstrated in an epilepsy patient.
Conclusion: As applied with the 8 2 transceiver, the MPFLAGRE sequence generates both whole-brain contrast suitable for lesional and T -weighted imaging at 7 T in fewer than 10 minutes within the US Food and Drug Administration's specific absorption rate guidelines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590483 | PMC |
http://dx.doi.org/10.1002/mrm.27598 | DOI Listing |
Insights Imaging
January 2025
Diagnostic and Interventional Radiology, University Hospital of Zurich, University Zurich, Zurich, Switzerland.
Objectives: To compare and correlate bone edema volume detected by 3D-short-tau-inversion-recovery (STIR) sequence to osseous decay detected by a T1-based sequence and conventional panoramic radiography (OPT).
Materials And Methods: Patients with clinical evidence of apical periodontitis were included retrospectively and received OPT as well as MRI of the viscerocranium including a 3D-STIR and a 3D-T1 gradient echo sequence. Bone edema was visualized using the 3D-STIR sequence and periapical hard tissue changes were evaluated using the 3D-T1 sequence.
AJNR Am J Neuroradiol
January 2025
Department of Neurology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium.
Purpose: Posterior fossa ring-enhancing lesions (PFREL) in the adult immunocompetent hosts pose a diagnostic challenge. We aimed to evaluate the spectrum of PFREL etiologies and propose a diagnostic algorithm.
Methods: This study involved a retrospective analysis of PFREL cases from our institution (January 2023 to April 2024) and a systematic literature review conducted using Embase and PubMed databases following the PRISMA 2020 guidelines.
Neurosurgery
January 2025
Department of Biomedical Sciences, Humanitas University, Milan, Italy.
Background And Objectives: Understanding and managing seizure activity is crucial in neuro-oncology, especially for highly epileptogenic lesions like isocitrate dehydrogenase (IDH)-mutant gliomas. Advanced MRI techniques such as diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) have been used to describe microstructural changes associated with epilepsy. However, their role in tumor-related epilepsy (TRE) remains unclear.
View Article and Find Full Text PDFNeurooncol Adv
January 2025
Institute for Artificial Intelligence in Medicine, University Hospital Essen, Germany.
Background: This study aimed to develop an automated algorithm to noninvasively distinguish gliomas from other intracranial pathologies, preventing misdiagnosis and ensuring accurate analysis before further glioma assessment.
Methods: A cohort of 1280 patients with a variety of intracranial pathologies was included. It comprised 218 gliomas (mean age 54.
World J Radiol
January 2025
Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12808, Czech Republic.
Background: Whole-body magnetic resonance imaging (wbMRI) allows general assessment of systemic cancers including lymphomas without radiation burden.
Aim: To evaluate the diagnostic performance of wbMRI in the staging of diffuse large B-cell lymphoma (DLBCL), determine the value of individual MRI sequences, and assess patients' concerns with wbMRI.
Methods: In this single-center prospective study, adult patients newly diagnosed with systemic DLBCL underwent wbMRI on a 3T scanner [diffusion weighted images with background suppression (DWIBS), T2, short tau inversion recovery (STIR), contrast-enhanced T1] and fluorodeoxyglucose (F-FDG) positron emission tomography/computed tomography (PET/CT) (reference standard).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!