Acute respiratory distress syndrome after the use of gadolinium contrast agent.

Respir Med Case Rep

Department of Pulmonary Diseases, Ataturk University, School of Medicine, 25240, Erzurum, Turkey.

Published: October 2018

Acute respiratory distress syndrome (ARDS) is a life-threatening medical emergency. The etiology of ARDS can involve various causes. ARDS associated with the use of iodinated contrast media is rarely reported, and the literature includes only one case of ARDS due to gadobutrol. A 46-year-old female patient presented to our emergency department with shortness of breath, wheezing, swelling of the lips, and difficulty swallowing about 30 minutes after undergoing magnetic resonance imaging with 6.5 ml (0.1 ml/kg) gadobutrol (Gadovist) contrast for a submandibular mass. She was treated for anaphylaxis, then immediately evaluated using chest x-ray and arterial blood gas analysis. Based on the findings, she was diagnosed with ARDS and started on continuous positive airway pressure (CPAP) ventilatory support and methylprednisolone at a dose of 1 mg/kg/day. On day 3 of follow-up, all symptoms had completely regressed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6223103PMC
http://dx.doi.org/10.1016/j.rmcr.2018.10.018DOI Listing

Publication Analysis

Top Keywords

acute respiratory
8
respiratory distress
8
distress syndrome
8
ards
5
syndrome gadolinium
4
gadolinium contrast
4
contrast agent
4
agent acute
4
syndrome ards
4
ards life-threatening
4

Similar Publications

Acute rhinosinusitis causes more than 30 million patients to seek health care per year in the United States. Respiratory tract infections, including bronchitis and sinusitis, account for 75% of outpatient antibiotic prescriptions in primary care. Sinusitis is a clinical diagnosis; the challenge lies in distinguishing between the symptoms of bacterial and viral sinusitis.

View Article and Find Full Text PDF

Neutrophils play key protective roles in influenza infections, yet excessive neutrophilic inflammation is a hallmark of acute lung injury during severe infections. Phenotypic heterogeneity is increasingly recognized in neutrophil populations; however, how functional variation in neutrophils between individuals determine the diverse outcomes of influenza remains unclear. To examine immunologic responses that may drive varying outcomes in influenza, we infected C57BL/6 (B6) and A/J mice with mouse-adapted influenza A virus A/PR/8/34 H1N1.

View Article and Find Full Text PDF

Background: Nirmatrelvir with ritonavir (Paxlovid) is indicated for patients with Coronavirus Disease 2019 (COVID-19) who are at risk for progression to severe disease due to the presence of one or more risk factors. Millions of treatment courses have been prescribed in the United States alone. Paxlovid was highly effective at preventing hospitalization and death in clinical trials.

View Article and Find Full Text PDF

Protocol for evaluating humoral immune responses in mice following SARS-CoV-2 vaccination.

STAR Protoc

January 2025

Guangzhou National Laboratory, Bio-Island, Guangzhou, Guangdong 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China. Electronic address:

Binding and neutralizing antibodies are critical indicators of protection against viral pathogens and are essential for assessing the immunogenicity and efficacy of a vaccine. Here, we present a protocol comprising two assays for measuring the spike-specific binding and neutralizing antibodies in mouse plasma following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. We describe steps for determining binding antibody titers using enzyme-linked immunosorbent assay (ELISA) and assessing neutralizing antibody titers through a pseudovirus neutralization assay.

View Article and Find Full Text PDF

Thermally Triggered Double Emulsion-Integrated Hydrogel Microparticles for Multiplexed Molecular Diagnostics.

Adv Sci (Weinh)

January 2025

Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.

During the COVID-19 pandemic, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been recognized as the most reliable diagnostic tool. However, there is a need to develop multiplexed assays capable of analyzing multiple genes simultaneously to expand its application. To address this, a multiplexed RT-qPCR using a double emulsion (DE)-based carrier and a polymer microparticle reactor, termed primer-incorporated network tailored with Taqman probe (TaqPIN) is developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!