Smad7 is an inhibitory Smad and plays a protective role in many inflammatory diseases. However, the roles of Smad7 in rheumatoid arthritis (RA) remain unexplored, which were investigated in this study. The activation of TGF-β/Smad signaling was examined in synovial tissues of patients with RA. The functional roles and mechanisms of Smad7 in RA were determined in a mouse model of collagen-induced arthritis (CIA) in Smad7 wild-type (WT) and knockout (KO) CD-1 mice, a strain resistant to autoimmune arthritis induction. TGF-β/Smad3 signaling was markedly activated in synovial tissues of patients with RA, which was associated with the loss of Smad7, and enhanced Th17 and Th1 immune response. The potential roles of Smad7 in RA were further investigated in a mouse model of CIA in Smad7 WT/KO CD-1 mice. As expected, Smad7-WT CD-1 mice did not develop CIA. Surprisingly, CD-1 mice with Smad7 deficiency developed severe arthritis including severe joint swelling, synovial hyperplasia, cartilage damage, massive infiltration of CD3 T cells and F4/80 macrophages, and upregulation of proinflammatory cytokines IL-1β, TNFα, and MCP-1. Further studies revealed that enhanced arthritis in Smad7 KO CD-1 mice was associated with increased Th1, Th2 and, importantly, Th17 over the Treg immune response with overactive TGF-β/Smad3 and proinflammatory IL-6 signaling in the joint tissues. Smad7 deficiency increases the susceptibility to autoimmune arthritis in CD-1 mice. Enhanced TGF-β/Smad3-IL-6 signaling and Th17 immune response may be a mechanism through which disrupted Smad7 causes autoimmune arthritis in CD-1 mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6224447PMC
http://dx.doi.org/10.3389/fimmu.2018.02537DOI Listing

Publication Analysis

Top Keywords

cd-1 mice
28
autoimmune arthritis
12
immune response
12
smad7
11
loss smad7
8
arthritis
8
rheumatoid arthritis
8
arthritis smad7
8
roles smad7
8
synovial tissues
8

Similar Publications

A comparative approach on the prophylactic impact of fermented beverages on acute ulcerative colitis in mouse model.

Pol J Vet Sci

December 2024

Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, 15030, İstiklal Campus, Burdur, Turkey.

Acute ulcerative colitis is an inflammatory disease of the colon that is becoming increasingly prevalent. Yet, a growing body of evidence supports the efficacy of dietary interventions in preventing acute ulcerative colitis. Fermented beverages have been the focus of research in humans and animals for several years due to their potential to influence overall health functions with an emphasis on gut health.

View Article and Find Full Text PDF
Article Synopsis
  • Developed a non-contact method using acousto-hydrodynamic tweezers (AHT) for denuding cumulus-oocyte complexes (COCs), showing higher efficiency compared to traditional manual methods.
  • Tested on mice, the method demonstrated no damage to oocytes and reduced denudation time by 46% while maintaining embryo development rates.
  • Findings suggest that using acoustic waves can significantly improve the denudation process for intracytoplasmic sperm injection (ICSI), potentially enhancing fertility treatment procedures.
View Article and Find Full Text PDF

Background: Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of the CAG trinucleotide repeat in the huntingtin gene which encodes the mutant huntingtin protein (mHTT) that is associated with HD-related neuropathophysiology. Noninvasive visualization of mHTT aggregates in the brain, with positron emission tomography (PET), will allow to reliably evaluate the efficacy of therapeutic interventions in HD. This study aimed to assess the radiation burden of [F]CHDI-650, a novel fluorinated mHTT radioligand, in humans based on both in vivo and ex vivo biodistribution in mice and subsequent determination of dosimetry for dosing in humans.

View Article and Find Full Text PDF

Development and evaluation of deuterated [F]JHU94620 isotopologues for the non-invasive assessment of the cannabinoid type 2 receptor in brain.

EJNMMI Radiopharm Chem

December 2024

Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany.

Background: The cannabinoid type 2 receptors (CB2R) represent a target of increasing importance in neuroimaging due to its upregulation under various neuropathological conditions. Previous evaluation of [F]JHU94620 for the non-invasive assessment of the CB2R availability by positron emission tomography (PET) revealed favourable binding properties and brain uptake, however rapid metabolism, and generation of brain-penetrating radiometabolites have been its main limitations. To reduce the bias of CB2R quantification by blood-brain barrier (BBB)-penetrating radiometabolites, we aimed to improve the metabolic stability by developing -d and -d deuterated isotopologues of [F]JHU94620.

View Article and Find Full Text PDF

Background: Exposure to endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), disrupts reproduction across generations. Germ cell epigenetic alterations are proposed to bridge transgenerational reproductive defects resulting from EDCs. Previously, we have shown that prenatal exposure to environmentally relevant doses of BPA or its substitute, BPS, caused transgenerationally maintained reproductive impairments associated with neonatal spermatogonial epigenetic changes in male mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!