Background: The golden Syrian hamster is an emerging model organism. To optimize its use, our group has made the first genetically engineered hamsters. One of the first genes that we investigated is which encodes for the KCNQ1 potassium channel and also has been implicated as a tumor suppressor gene.
Materials And Methods: We generated knockout (KO) hamsters by CRISPR/Cas9-mediated gene targeting and investigated the effects of KCNQ1-deficiency on tumorigenesis.
Results: By 70 days of age seven of the eight homozygous KOs used in this study began showing signs of distress, and on necropsy six of the seven ill hamsters had visible cancers, including T-cell lymphomas, plasma cell tumors, hemangiosarcomas, and suspect myeloid leukemias.
Conclusions: None of the hamsters in our colony that were wild-type or heterozygous for mutations developed cancers indicating that the cancer phenotype is linked to -deficiency. This study is also the first evidence linking KCNQ1-deficiency to blood cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187935 | PMC |
http://dx.doi.org/10.4103/jcar.JCar_5_18 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!