AI Article Synopsis

  • Cdk1 activity is tightly regulated during different phases of the cell cycle, and recent findings suggest that both Cdk1 and the phosphatase PP2A:B55 display bistable behavior that affects mitotic transitions.
  • The study used quantitative assays and mathematical modeling to show that the interplay between Cdk1 activation and PP2A:B55 inactivation results in hysteresis, meaning the response of the cell cycle can differ based on previous states.
  • Notably, the research indicates that inhibiting both Wee1 and Greatwall kinases leads to a loss of cell-cycle memory, which could have therapeutic implications, especially in cancer treatment strategies.

Article Abstract

Distinct protein phosphorylation levels in interphase and M phase require tight regulation of Cdk1 activity [1, 2]. A bistable switch, based on positive feedback in the Cdk1 activation loop, has been proposed to generate different thresholds for transitions between these cell-cycle states [3-5]. Recently, the activity of the major Cdk1-counteracting phosphatase, PP2A:B55, has also been found to be bistable due to Greatwall kinase-dependent regulation [6]. However, the interplay of the regulation of Cdk1 and PP2A:B55 in vivo remains unexplored. Here, we combine quantitative cell biology assays with mathematical modeling to explore the interplay of mitotic kinase activation and phosphatase inactivation in human cells. By measuring mitotic entry and exit thresholds using ATP-analog-sensitive Cdk1 mutants, we find evidence that the mitotic switch displays hysteresis and bistability, responding differentially to Cdk1 inhibition in the mitotic and interphase states. Cdk1 activation by Wee1/Cdc25 feedback loops and PP2A:B55 inactivation by Greatwall independently contributes to this hysteretic switch system. However, elimination of both Cdk1 and PP2A:B55 inactivation fully abrogates bistability, suggesting that hysteresis is an emergent property of mutual inhibition between the Cdk1 and PP2A:B55 feedback loops. Our model of the two interlinked feedback systems predicts an intermediate but hidden steady state between interphase and M phase. This could be verified experimentally by Cdk1 inhibition during mitotic entry, supporting the predictive value of our model. Furthermore, we demonstrate that dual inhibition of Wee1 and Gwl kinases causes loss of cell-cycle memory and synthetic lethality, which could be further exploited therapeutically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287978PMC
http://dx.doi.org/10.1016/j.cub.2018.09.059DOI Listing

Publication Analysis

Top Keywords

cdk1 pp2ab55
12
cdk1
9
regulation cdk1
8
cdk1 activation
8
mitotic entry
8
cdk1 inhibition
8
inhibition mitotic
8
feedback loops
8
pp2ab55 inactivation
8
mitotic
6

Similar Publications

PP2A-B55 phosphatase counteracts Ki-67-dependent chromosome individualization during mitosis.

Cell Rep

July 2024

Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; ICREA, Barcelona, Spain. Electronic address:

Cell cycle progression is regulated by the orderly balance between kinase and phosphatase activities. PP2A phosphatase holoenzymes containing the B55 family of regulatory B subunits function as major CDK1-counteracting phosphatases during mitotic exit in mammals. However, the identification of the specific mitotic roles of these PP2A-B55 complexes has been hindered by the existence of multiple B55 isoforms.

View Article and Find Full Text PDF

Cell cycle control relies on a delicate balance of phosphorylation with CDK1 and phosphatases like PP1 and PP2A-B55. Yet, identifying the primary substrate responsible for cell cycle oscillations remains a challenge. We uncover the pivotal role of phospho-regulation in the anaphase-promoting complex/cyclosome (APC/C), particularly through the Apc1-loop domain (Apc1-300L), orchestrated by CDK1 and PP2A-B55.

View Article and Find Full Text PDF

Entry into mitosis has been classically attributed to the activation of a cyclin B/Cdk1 amplification loop via a partial pool of this kinase becoming active at the end of G2 phase. However, how this initial pool is activated is still unknown. Here we discovered a new role of the recently identified PP2A-B55 inhibitor FAM122A in triggering mitotic entry.

View Article and Find Full Text PDF

Structural, enzymatic and spatiotemporal regulation of PP2A-B55 phosphatase in the control of mitosis.

Front Cell Dev Biol

August 2022

Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France.

Cells require major physical changes to induce a proper repartition of the DNA. Nuclear envelope breakdown, DNA condensation and spindle formation are promoted at mitotic entry by massive protein phosphorylation and reversed at mitotic exit by the timely and ordered dephosphorylation of mitotic substrates. This phosphorylation results from the balance between the activity of kinases and phosphatases.

View Article and Find Full Text PDF

Arpp19 is a potent PP2A-B55 inhibitor that regulates this phosphatase to ensure the stable phosphorylation of mitotic/meiotic substrates. At G2-M, Arpp19 is phosphorylated by the Greatwall kinase on S67. This phosphorylated Arpp19 form displays a high affinity to PP2A-B55 and a slow dephosphorylation rate, acting as a competitor of PP2A-B55 substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!