Premise Of The Study: Leaf venation and its hierarchal traits are crucial to the hydraulic and mechanical properties of leaves, reflecting plant life-history strategies. However, there is an extremely limited understanding of how variation in leaf hydraulics affects the leaf economic spectrum (LES) or whether venation correlates more strongly with hydraulic conductance or biomechanical support among hierarchal orders.
Methods: We examined correlations of leaf hydraulics, indicated by vein density, conduit diameter, and stomatal density with light-saturated photosynthetic rates, leaf lifespan (LLS), and leaf morpho-anatomical traits of 39 xerophytic species grown in a common garden.
Key Results: We found positive relationships between light-saturated, area-based photosynthetic rates, and vein densities, regardless of vein orders. Densities of leaf veins had positive correlations with stomatal density. We also found positive relationships between LLS and vein densities. Leaf area was negatively correlated with the density of major veins but not with minor veins. Most anatomical traits were not related to vein densities.
Conclusions: We developed a network diagram of the correlations among leaf hydraulics and leaf economics, which suggests functional trade-offs between hydraulic costs and lifetime carbon gain. Leaf hydraulics efficiency and carbon assimilation were coupled across species. Vein construction costs directly coordinated with the LLS. Our findings indicate that hierarchal orders of leaf veins did not differ in the strength of their correlations between hydraulic conductance and biomechanical support. These findings clarify how leaf hydraulics contributes to the LES and provide new insight into life-history strategies of these xerophytic species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajb2.1185 | DOI Listing |
Tree Physiol
January 2025
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
Although the separate effects of water and nitrogen (N) limitations on forest growth are well known, the question of how to predict their combined effects remains a challenge for modeling of climate change impacts on forests. Here, we address this challenge by developing a new eco-physiological model that accounts for plasticity in stomatal conductance and leaf N concentration. Based on optimality principle, our model determines stomatal conductance and leaf N concentration by balancing carbon uptake maximization, hydraulic risk and cost of maintaining photosynthetic capacity.
View Article and Find Full Text PDFFront Plant Sci
December 2024
School of Hydraulic Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China.
Water-saving irrigation and the mixed application of controlled-release nitrogen fertilizer (CRNF) and common urea (CU; with a higher nitrogen release rate) have shown promise in improving rice yield with high resource use efficiency. However, the physiological mechanism underlying this effect remains largely unknown. This study involved a field experiment on rice in Jingzhou City, Central China, in 2020 and 2021.
View Article and Find Full Text PDFPlants (Basel)
December 2024
CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Hydraulic functionality is crucial for tree productivity and stress tolerance. According to the theory of the fast-slow economics spectrum, the adaptive strategies of different tree species diverge along a spectrum defined by coordination and trade-offs of a suite of functional traits. The fast- and slow-growing species are expected to differ in hydraulic efficiency and safety; however, there is still a lack of investigation on the mechanistic association between tree growth rate and tree hydraulic functionality.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
Functional redundancy is considered a pivotal mechanism for maintaining the adaptability of species by preventing the loss of key functions in response to dehydration. However, we still lack a comprehensive understanding of the redundancy of leaf hydraulic systems along aridity gradients. Here, photosynthesis (A), stomatal conductance (g) and leaf hydraulic conductance (K) during dehydration were measured in 20 woody species from a range of aridity index (AI) conditions and growing in a common garden to quantify stomatal redundancy (SR), the extent of stomatal opening beyond the optimum required for maximum photosynthesis (A), leaf hydraulic redundancy (HR), and the extent of leaf hydraulic conductance (K) beyond the optimum required for maximum g (g).
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C grasses, a high photosynthetic rate (A) may depend on higher vein density (D) and hydraulic conductance (K). However, the higher D of C grasses suggests a hydraulic surplus, given their reduced need for high K resulting from lower stomatal conductance (g).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!