Russeting partially restores apple skin permeability to water vapour.

Planta

Institute for Horticultural Production Systems, Leibniz-University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.

Published: March 2019

The higher water loss of russeted fruit results from the higher permeance of the periderm of the russeted skin as compared to that of the intact cuticle and epidermis. Apple fruit surfaces are often in-parallel composites, comprising areas of intact cuticle (atop a healthy epidermis) adjacent to areas covered by periderm (so-called russet). The occurrence of non-russeting and russeting genotypes makes this species an ideal model to study the barrier properties of its composite skin. The objective was to quantify the water vapour permeances of non-russeted ([Formula: see text]) and russeted fruit skins ([Formula: see text]). Rates of water loss from whole fruit ([Formula: see text]) and excised epidermal skin segments (ES) or peridermal skin segments (PS) were quantified gravimetrically. The [Formula: see text] was larger in russeting than in non-russeting genotypes because [Formula: see text] exceeded [Formula: see text] by about twofold. Also, the [Formula: see text] of russeting genotypes was larger than that of non-russeting genotypes. Generally, [Formula: see text] was more variable than [Formula: see text]. These differences were consistent across seasons and genotypes. The lower [Formula: see text] as compared to [Formula: see text] resulted primarily from the higher wax content of the cuticle of the [Formula: see text]. For non-russeted genotypes, the value of [Formula: see text] was significantly related to the permeance determined on the same intact fruit ([Formula: see text]). Close relationships were also found between the [Formula: see text] calculated from [Formula: see text] determined on the same fruit and the measured [Formula: see text]. For russeting genotypes, the [Formula: see text] or [Formula: see text] were not correlated with [Formula: see text]. The [Formula: see text] calculated from [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] (all determined on an individual-fruit basis) was significantly correlated with the measured [Formula: see text]. Our results demonstrate that the periderm permeance exceeds the cuticle permeance and that permeances of non-russeted surfaces of russeting genotypes exceed those of non-russeting genotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-018-3044-1DOI Listing

Publication Analysis

Top Keywords

[formula text]
104
[formula
26
text]
26
text] [formula
20
russeting genotypes
16
non-russeting genotypes
12
genotypes [formula
12
genotypes
9
water vapour
8
water loss
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!