Herein, the toxicity of particles generated from the complete combustion of 1 g coal at 500, 700, and 900 °C were compared, and combustion at 700 °C generated the most toxins. Chemical analyses revealed that all components except catechol, resorcinol, and aromatic amines were most abundant at 700 °C. Toxicity results confirmed that the relative mutagenicity, cytotoxicity, redox cycling, and production of reactive oxygen species was highest for particles generated at 700 °C. Particles generated during combustion at 700 °C exhibited higher toxicity toward biological systems due to a higher content of toxic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.etap.2018.11.003 | DOI Listing |
Arch Toxicol
January 2025
STARTNETICS - Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
Femtosecond lasers represent a novel tool for tattoo removal as sources that can be operated at high power, potentially leading to different removal pathways and products. Consequently, the potential toxicity of its application also needs to be evaluated. In this framework, we present a comparative study of Ti:Sapphire femtosecond laser irradiation, as a function of laser power and exposure time, on water dispersions of Pigment Green 7 (PG7) and the green tattoo ink Green Concentrate (GC), which contains PG7 as its coloring agent.
View Article and Find Full Text PDFDalton Trans
January 2025
Chemistry Division, Bhabha Atomic Research, Centre, Mumbai 400085, India.
Magnetic field-dependent magnetization of highly crystalline FeO magnetic nanoparticles has been carried out to understand surface canting structures at low and room temperatures. The exchange bias () values of ∼18 to 27 Oe at 300 K for three samples prepared from different precursors are observed; and a decrease in value is obtained when the samples are measured at 5 K. However, with a decrease in temperature, coercivity () increases.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Chemistry, Beihang University, Beijing 100191, China.
Dynamic density functional theory (DDFT) is a fruitful approach for modeling polymer dynamics, benefiting from its multiscale and hybrid nature. However, the Onsager coefficient, the only free parameter in DDFT, is primarily derived empirically, limiting the accuracy and broad application of DDFT. Herein, we propose a machine learning-based, bottom-up workflow to directly extract the Onsager coefficient from molecular simulations, circumventing partly heuristic assumptions in traditional approaches.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
Hepatocellular carcinoma (HCC) is a common malignancy and generally develops from liver cirrhosis (LC), which is primarily caused by the chronic hepatitis B (CHB) virus. Reliable liquid biopsy methods for HCC screening in high-risk populations are urgently needed. Here, we establish a porous silicon-assisted laser desorption ionization mass spectrometry (PSALDI-MS) technology to profile metabolite information hidden in human serum in a high throughput manner.
View Article and Find Full Text PDFToxicol Rep
June 2025
Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia.
The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!