Neuroprotective effects of triterpenoid saponins from Medicago sativa L. against HO-induced oxidative stress in SH-SY5Y cells.

Bioorg Chem

College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, People's Republic of China; Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, People's Republic of China. Electronic address:

Published: March 2019

Medicago sativa L. is a forage legume plant widely distributed in all continents. Six new triterpenoid saponins, Medicagosides A-F (1-6) and five known ones (7-11) were isolated from M. sativa. Their structures were determined via HRESIMS, 1D and 2D NMR analysis. Biologically, all the isolates displayed neuroprotective activities against HO-induced damage in SH-SY5Y cells. Among them, compounds 1, 3-5 and 10 exhibited striking neuroprotective activities at 100 μM, restoring cell viability range from 79.66% to 89.03%, relative to 79.46% (100 μM) of Trolox used as the positive control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2018.11.008DOI Listing

Publication Analysis

Top Keywords

triterpenoid saponins
8
medicago sativa
8
sh-sy5y cells
8
neuroprotective activities
8
neuroprotective effects
4
effects triterpenoid
4
saponins medicago
4
sativa ho-induced
4
ho-induced oxidative
4
oxidative stress
4

Similar Publications

[Mechanism of ginsenoside Rg_1 in regulating autophagy through miR-155/Notch1/Hes1 pathway to attenuate hypoxia/reoxygenation injury in HL-1 cells].

Zhongguo Zhong Yao Za Zhi

December 2024

School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.

This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is the major cause of chronic liver disease worldwide, with no universally recognized effective treatments currently available. In recent years, ginseng and its principal active components, such as ginsenosides, have shown potential protective effects in the treatment of these liver diseases. In NAFLD, studies have demonstrated that ginseng can improve hepatic lipid metabolism, reduce inflammatory responses, and inhibit oxidative stress and fibrosis, thereby attenuating the progression of NAFLD.

View Article and Find Full Text PDF

Ginsenoside Rg1 Promotes the Survival, Proliferation, and Differentiation of Senescent Neural Stem Cells Induced by D-galactose.

Actas Esp Psiquiatr

January 2025

Lab of Stem Cells and Tissue Engineering, Chongqing Medical University, 400016 Chongqing, China; Department of Histology and Embryology, Chongqing Medical University, 400016 Chongqing, China.

Background: Neural stem cells (NSCs) disrupt with aging, contributing to neurodegeneration. Ginsenoside Rg1 (Rg1), a compound found in Ginseng, is known for its anti-aging effects; however, its role in the progression of aging NSCs remains unclear. Therefore, this investigation explored the impact of Rg1 on the growth and maturation of aging NSC and elucidated its underlying molecular mechanisms.

View Article and Find Full Text PDF

Deapioplatycodin D (DPD) is a triterpenoid saponin natural compound isolated from the Chinese herb Platycodon grandiflorum that has antiviral and antitumor properties. This study aimed to investigate the effects of DPD on glioblastoma (GBM) cells and to determine its intrinsic mechanism of action. Using a CCK8 assay, it was found that DPD significantly inhibited the growth of GBM cells.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!