Quantitation of fast hydrolysis of cellulose catalyzed by its substituents for potential biomass conversion.

Bioresour Technol

Department of Textiles, Merchandising and Fashion Design, 234, HECO Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234, HECO Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Nebraska Center for Materials and Nanoscience, 234, HECO Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States. Electronic address:

Published: February 2019

This paper investigates the accelerated acidic hydrolysis of cellulose by its substituents for potential biomass conversion. Insufficient pretreatments and slow cellulose hydrolysis are major obstacles that impede efficient hydrolysis of cellulose. Substituted cellulose, such as dyed cotton, has large availability. It is susceptible to acidic hydrolysis and can be used for biomass conversion without any pretreatments. To understand the mechanism of accelerated hydrolysis of cellulose by its substituents is a prerequisite for cellulosic biomass conversion with high efficiency. Substituents with different charge properties were synthesized and their interactions with oxocarbenium ions were studied based on Density Functional Theory. Results indicate that hydrolysis rate is affected by field effect from substituents. Such field effect is dominated by amounts of negative charges on substituents and distance between negatively charged groups and oxocarbenium. Hydrolysis rate of dye-substituted cotton is higher than or comparable to that applied with other catalytic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2018.11.039DOI Listing

Publication Analysis

Top Keywords

hydrolysis cellulose
16
biomass conversion
16
hydrolysis
8
substituents potential
8
potential biomass
8
acidic hydrolysis
8
cellulose substituents
8
hydrolysis rate
8
cellulose
6
substituents
6

Similar Publications

Rice husk biowaste derived microcrystalline cellulose reinforced sustainable green composites: A comprehensive characterization for lightweight applications.

Int J Biol Macromol

January 2025

Natural Composites Research Group Lab, Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.

This study addresses the issue of waste generation within the food industry, focusing on the conversion of rice husk waste into value-added products. The investigation involves a comprehensive characterization of microcrystalline cellulose extracted from the rice husk and reinforcing them in bio-epoxy resin to determine its feasibility in producing ecofriendly products. The dried rice husk waste was made to undergo a series of treatments, including alkali, acid hydrolysis, and bleaching for extracting high purity microcrystalline cellulose.

View Article and Find Full Text PDF

The creation of polymer composites with better performance is a crucial thing. The cellulosic filler material gain popularity in polymer composites. In this study, aquatic plant Pistia stratiote leaves were used as a raw material for cellulose extraction.

View Article and Find Full Text PDF

Collaborative performance of enzymatic saccharification and organic pollutant degradation from PHP (phosphoric acid coupled with hydrogen peroxide) pretreatment of lignocellulose.

J Environ Manage

January 2025

College of Environmental Science, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; Sichuan Provincial Engineering Research Center of Agricultural Non-point Source Pollution Control, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.

As a newly developed technology, lignocellulose pretreatment of PHP (phosphoric acid coupled with hydrogen peroxide) can facilitate the enzymatic hydrolysis of pretreated lignocellulose for glucose production. It also has been found that the derived oxidative tail gas from pretreatment can facilely degrade organic pollutant. To balance the pollutant degradation and the glucose yield, the collaborative optimization on pretreatment was investigated.

View Article and Find Full Text PDF

High-consistency modification of cellulose fibers: Resource-efficient introduction of cationic charges, and their effect on fiber and nanofibril properties.

Carbohydr Polym

March 2025

Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; FibRe Center for Lignocellulose-based Thermoplastics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Electronic address:

Quaternized cellulose fibers and cellulose nanofibrils (CNFs) are attractive candidates for the development of new renewable and biodegradable materials. However, the etherification reaction, through which functionalization is commonly achieved, provides low efficiencies, limiting industrial interest in the modification. This work primarily aims to increase the efficiency for the quaternization of cellulosic fibers while keeping the fiber-structure intact.

View Article and Find Full Text PDF

Impact of accumulation of organic acids on the degradation of cellulose in historic paper.

Carbohydr Polym

March 2025

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia. Electronic address:

The acidity of historic paper, a property crucial for its preservation, is thought to mainly depend on the type of sizing. However, this research shows that during its degradation, paper acidity increases mainly due to the formation of non-volatile carboxylic acids, which accelerate acid-catalysed hydrolysis. Whether and how this accumulation depends on paper composition has not been studied systematically so far.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!