An integrated risk-based assessment of the North Sea to guide ecosystem-based management.

Sci Total Environ

Wageningen Marine Research, Haringkade 1, 1976 CP IJmuiden, the Netherlands.

Published: March 2019

This study provides an integrated perspective to ecosystem based management (EBM) by considering a diverse array of societal goals, i.e. sustainable food supply, clean energy and a healthy marine ecosystem, and a selection of management measures to achieve them. The primary aim of this exercise is to provide guidance for (more) integrated EBM in the North Sea based on an evaluation of the effectiveness of those management measures in contributing to the conservation of marine biodiversity. A secondary aim is to identify the requirements of the knowledge base to guide such future EBM initiatives. Starting from the societal goals we performed a scoping exercise to identify a "focal social-ecological system" which is a subset of the full social-ecological system but considered adequate to guide EBM towards the achievement of those societal goals. A semi-quantitative risk assessment including all the relevant human activities, their pressures and the impacted ecosystem components was then applied to identify the main threats to the North Sea biodiversity and evaluate the effectiveness of the management measures to mitigate those threats. This exercise revealed the need for such risk-based approaches in providing a more integrated perspective but also the trade-off between being comprehensive but qualitative versus quantitative but limited in terms of the "focal" part of the SES that can be covered. The findings in this paper provide direction to the (further) development of EBM and its knowledge base that should ultimately allow an integrated perspective while maintaining its capacity to deliver the accuracy and detail needed for decision-making.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.11.001DOI Listing

Publication Analysis

Top Keywords

north sea
12
integrated perspective
12
societal goals
12
management measures
12
effectiveness management
8
knowledge base
8
integrated
5
management
5
ebm
5
integrated risk-based
4

Similar Publications

Climate change is rapidly altering Arctic marine environments, leading to warmer waters, increased river discharge, and accelerated sea ice melt. The Hudson Bay Marine System (HBMS) experiences the fastest rate of sea ice loss in the Canadian North resulting in a prolonged open water season during the summer months. We examined microbial communities in the Hudson Strait using high throughput 16s rRNA gene sequencing during the peak of summer, in which the bay was almost completely ice-free, and air temperatures were high.

View Article and Find Full Text PDF

This study examines how southern wintering areas may contribute to organochlorine (OCs) loads in arctic seabirds during breeding. Light-sensitive geolocators (GLS loggers) were deployed on Arctic skuas (Stercorarius parasiticus) in one high arctic and two subarctic colonies. Hexcahlorobenzene (HCB), Chlordanes, Mirex, p, p'-dichlorodiphenyldichloro- ethylene (p, p'-DDE), and Polychlorinated biphenyls (PCBs) were measured in the blood of breeding adults at the nest (58 individuals, a total of 128 samples) in northern Norway and Svalbard between 2009 and 2015.

View Article and Find Full Text PDF

The European eel (Anguilla anguilla L.) exhibits a remarkable phenotypic plasticity by occupying both marine and freshwater habitats and transitional areas in between. Because these habitats are characterized by different food sources with different fatty acid compositions, it remains unclear how eels from different habitats obtain essential long-chain polyunsaturated fatty acids (LC-PUFAs) to integrate in their lipids.

View Article and Find Full Text PDF

The Arctic environment plays a critical role in the global climate system and marine biodiversity. The region's ice-covered expanses provide essential breeding and feeding grounds for a diverse assemblage of marine species, who have adapted to thrive in these harsh conditions and consequently are under threat from global warming. The bearded seal (Erignathus barbatus), including two subspecies (E.

View Article and Find Full Text PDF

Nest Site Selection by Green Sea Turtles () and Implications for Conservation on Qilianyu, Xisha Islands, South China Sea.

Ecol Evol

January 2025

Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences Hainan Normal University Haikou China.

The green sea turtle () is the only sea turtle species that breeds in China, and the largest remaining nesting grounds for green sea turtles in Chinese waters is found on the Qilianyu atoll of the Xisha Islands. Nesting site selection is particularly important for egg survival, and understanding the microhabitat characteristics of green sea turtle nesting sites is crucial for delineating priority conservation areas for nesting grounds. In this study, we aimed to examine the role of several microhabitat ecological factors in the selection of nesting sites and the success of nesting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!