A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermoalkaliphilic laccase treatment for enhanced production of high-value benzaldehyde chemicals from lignin. | LitMetric

Thermoalkaliphilic laccase treatment for enhanced production of high-value benzaldehyde chemicals from lignin.

Int J Biol Macromol

School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea. Electronic address:

Published: March 2019

Enzymatic conversion of lignin into high-value chemicals is a key step in sustainable and eco-friendly development of lignin valorization strategies. In the present study, a novel thermoalkaliphilic laccase, CtLac, from Caldalkalibacillus thermarum strain TA2.A1 was tested for the depolymerization of lignin and the production of value-added chemicals, using three different lignocellulosic biomass, organosolv lignin (OSL), and Kraft lignin. Seven valuable lignin monomers were identified from the CtLac-treated samples using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Remarkably, increases of 22.0%, 65.6%, and 27.3% of p-hydroxybenzaldehyde and increases of 111.1%, 93.5%, and 238.1% of vanillin were observed from rice straw, corn stover, and reed, respectively. Comparative analysis of lignin monomers released from rice straw, using Trametes versicolor laccase (TvL) and CtLac indicated efficient depolymerization of lignin by CtLac. CtLac treatment resulted in 2.3 fold and 5.6 fold, and 1.9 fold and 2.8 fold higher amounts of p-hydroxybenzaldehyde and vanillin from OSL and Kraft lignin, respectively, compared to CtLac-treated rice straw samples after 12 h reaction. OSL was the best substrate for the production of benzaldehyde chemicals using CtLac treatment. The results demonstrated potential application of bacterial laccase CtLac for valorization of biomass lignin into high-value benzaldehyde chemicals under thermoalkaliphilic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.11.144DOI Listing

Publication Analysis

Top Keywords

benzaldehyde chemicals
12
rice straw
12
fold fold
12
lignin
11
thermoalkaliphilic laccase
8
high-value benzaldehyde
8
lignin high-value
8
laccase ctlac
8
depolymerization lignin
8
osl kraft
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!