Alum-functionalized graphene oxide nanocomplexes for effective anticancer vaccination.

Acta Biomater

The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin 300192, China. Electronic address:

Published: January 2019

Aluminum-based adjuvant (e.g., aluminum oxyhydroxide (AlO(OH), known as the commercial Alhydrogel® (Alum)) is the first adjuvant to be used in human vaccines. Although Alum shows a robust induction of antibody-mediated immunity, its weak stimulation of cell-mediated immunity makes it a questionable adjuvant for cancer immunotherapy. Herein, we described a novel formulation of Alum-based adjuvant by preparing AlO(OH)-modified graphene oxide (GO) nanosheets (GO-AlO(OH)), which, in addition to maintaining the induction of humoral immune response by AlO(OH), could further elicit the cellular immune response by GO. Similar to Alum, GO-AlO(OH) vaccine formulation could be constructed by the incorporation of antigen using a facile mixing/adsorption approach. Antigen-loaded GO-AlO(OH) nanocomplexes facilitated cellular uptake and cytosolic release of antigens and promoted DC maturation, thereby eliciting higher antigen-specific IgG titers, inducing robust CD4 and CD8 T lymphocyte response, and inhibiting tumor growth in vivo. Furthermore, by employing tumor cell lysate-based cancer vaccines, GO-AlO(OH) nanocomplexes led to significant inhibition of tumor growth and can be implemented as a personalized treatment strategy for cancer vaccine development. Overall, GO-AlO(OH) nanocomplexes described herein may serve as a facile and efficient approach for effective anticancer vaccination. STATEMENT OF SIGNIFICANCE: Herein, we described a novel formulation of aluminum-based adjuvant by preparing aluminum oxyhydroxide (AlO(OH)) (known as "Alum")-modified graphene oxide (GO) nanocomplexes (GO-AlO(OH)), which, in addition to maintaining the induction of humoral immune response by AlO(OH), could further elicit the cellular immune response by GO. GO-AlO(OH) nanocomplexes can be prepared easily and in large scale by a chemical precipitation method. Similar to "Alum," antigen-loaded GO-AlO(OH) vaccine formulation could be constructed by the incorporation of antigen using a facile mixing/adsorption approach. The very simple and reproductive preparation process of vaccines and the powerful ability to raise both humoral and cellular immune responses provide a novel approach for improving cancer immunotherapy efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2018.11.023DOI Listing

Publication Analysis

Top Keywords

immune response
16
go-alooh nanocomplexes
16
graphene oxide
12
cellular immune
12
oxide nanocomplexes
8
effective anticancer
8
anticancer vaccination
8
aluminum-based adjuvant
8
aluminum oxyhydroxide
8
oxyhydroxide alooh
8

Similar Publications

Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.

View Article and Find Full Text PDF

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

Background: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection remains challenging due to its insidious symptoms. Current diagnostic methods, including clinical assessments and laboratory tests, frequently lack the speed and specificity needed for timely intervention, particularly in vulnerable populations such as older adults, intensive care unit (ICU) patients, and those with compromised immune systems.

View Article and Find Full Text PDF

One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them.

Blood

January 2025

Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.

Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.

View Article and Find Full Text PDF

Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!