FLOTILLIN-1 and FLOTILLIN-2 are membrane rafts associated proteins that have been implicated in insulin and growth factor signaling, endocytosis, cell migration, proliferation, differentiation, cytoskeleton remodeling and membrane trafficking. Furthermore, FLOTILLINs also play important roles in the progression of cancer and neurodegenerative diseases. In this study, the roles of flotillins are investigated in planarian Dugesia japonica. The results show that Djflotillin-1 and Djflotillin-2 play a key role in homeostasis maintenance and regeneration process by regulating the proliferation of the neoblast cells, they are not involved in the maintenance and regeneration of the central nervous system in planarians.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2018.11.009DOI Listing

Publication Analysis

Top Keywords

dugesia japonica
8
maintenance regeneration
8
expression functional
4
functional analysis
4
analysis flotillins
4
flotillins dugesia
4
japonica flotillin-1
4
flotillin-1 flotillin-2
4
flotillin-2 membrane
4
membrane rafts
4

Similar Publications

DjsoxP-1 and Djsox5 are essential for tissue homeostasis and regeneration in Dugesia japonica.

Cell Tissue Res

January 2025

College of Life Science, Henan Normal University, No. 46, Jianshe Road, Xinxiang 453007, Henan, China.

Sox genes encode a family of transcription factors that regulate multiple biological processes during metazoan development, including embryogenesis, tissue homeostasis, nervous system specification, and stem cell maintenance. The planarian Dugesia japonica contains a reservoir of stem cells that grow and divide continuously to support cellular turnover. However, whether SOX proteins retain these conserved functions in planarians remains to be determined.

View Article and Find Full Text PDF

FoxO is required for neoblast differentiation during planarian regeneration.

Int J Biol Macromol

December 2024

Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China. Electronic address:

Stem cells are of great importance in the maintenance and regeneration of tissues, with Forkhead box O (FoxO) proteins emerging as pivotal regulators of their functions. However, the precise impact of FoxO proteins on stem cell behavior within regenerative environments remains ambiguous. Planarians, renowned for their abundance of adult stem cells (neoblasts), serve as an excellent model for investigating the dynamics of stem cells during regeneration.

View Article and Find Full Text PDF

Biological evolution has generated a vast array of natural compounds produced by organisms across all domains. Among these, secondary metabolites, selected to enhance an organism's competitiveness in its natural environment, make them a reservoir for discovering new compounds with cytotoxic activity, potentially useful as novel anticancer agents. Slime secretions, the first barrier between epithelial surfaces and the surrounding environment, frequently contain cytotoxic molecules to limit the growth of parasitic organisms.

View Article and Find Full Text PDF

Planarians are well-known model organisms for regeneration and developmental biology research due to their remarkable regenerative capacity. Here, we aim to advocate for the use of planaria as a valuable model for neurobiology, as well. Planarians have most of the major qualities of more developed organisms, including a primal brain.

View Article and Find Full Text PDF
Article Synopsis
  • The SoxB family of genes is important for how animals work, but scientists don't know much about them in planarians, which are flatworms that can regenerate.
  • This study looks at how specific SoxB genes (DjSoxB1, DjSoxB2, and DjSoxB3) help planarians grow back body parts after injury.
  • It finds that when these genes are silenced, planarians grow slower and have trouble moving, showing that these genes are crucial for cell growth and normal nerve function during regeneration.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!