Design, synthesis and biological evaluation of novel, orally bioavailable pyrimidine-fused heterocycles as influenza PB2 inhibitors.

Eur J Med Chem

Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai, 201203, PR China. Electronic address:

Published: January 2019

With the aim to identify novel influenza PB2 inhibitors with high potency and excellent pharmacokinetic parameters, we have designed and synthesized two new series of pyrimidine-fused heterocycle derivatives based on two generations of co-crystal structures. Docking studies with the newly disclosed PDB structure guided the second round of rational design and led to the discovery of 25m, 25o and 25p as representative compounds with improved potency (EC < 1 nM). After pinpointing the metabolic labile site, the CN replacement of compound 25p successfully produced compound 29c, which demonstrated highly improved PK properties (Cl = 1.3 mL/min/kg, PO AUC = 152 μM h at 10 mpk in mouse, F = 57%) and improved potency, emerging as a promising lead compound for the treatment of influenza A infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2018.11.015DOI Listing

Publication Analysis

Top Keywords

influenza pb2
8
pb2 inhibitors
8
design synthesis
4
synthesis biological
4
biological evaluation
4
evaluation novel
4
novel orally
4
orally bioavailable
4
bioavailable pyrimidine-fused
4
pyrimidine-fused heterocycles
4

Similar Publications

Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.

View Article and Find Full Text PDF

Detection and Phylogenetic Characterization of Influenza D in Swedish Cattle.

Viruses

December 2024

Department of Microbiology, Swedish Veterinary Agency, Ulls väg 2B, 751 89 Uppsala, Sweden.

Increased evidence suggests that cattle are the primary host of Influenza D virus (IDV) and may contribute to respiratory disease in this species. The aim of this study was to detect and characterise IDV in the Swedish cattle population using archived respiratory samples. This retrospective study comprised a collection of a total 1763 samples collected between 1 January 2021 and 30 June 2024.

View Article and Find Full Text PDF

A Model H5N2 Vaccine Strain for Dual Protection Against H5N1 and H9N2 Avian Influenza Viruses.

Vaccines (Basel)

December 2024

Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.

Highly pathogenic (HP) H5Nx and low-pathogenicity (LP) H9N2 avian influenza viruses (AIVs) pose global threats to the poultry industry and public health, highlighting the critical need for a dual-protective vaccine. In this study, we generated a model PR8-derived recombinant H5N2 vaccine strain with hemagglutinin (HA) and neuraminidase (NA) genes from clade 2.3.

View Article and Find Full Text PDF

Influenza A viruses have been a threat to human health for the past 100 years. Understanding the dynamics and pathogenicity of the influenza viruses is of great value in controlling the influenza pandemic. Fluorescent protein-carrying recombinant influenza virus is a substantially useful tool for studying viral characteristics and high-throughput screening .

View Article and Find Full Text PDF

During the 2023-2024 winter, 11 high pathogenicity avian influenza (HPAI) outbreaks caused by clade 2.3.4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!