Lymphangiogenesis is critically involved in tissue fluid balance, graft rejection, and tumor metastasis. Endogenous regulation of lymphangiogenesis is poorly understood. Herein, we use the lymphatic vessel architecture at the limbal border of the normally avascular cornea, a quantitative trait under strong genetic influence, as a model system to identify new candidate genes regulating lymphangiogenesis. Comparing low-lymphangiogenic BALB/cN with high-lymphangiogenic C57BL/6N mice, we performed quantitative trait loci analysis of five phenotypes in a large BALB/cN × C57BL/6N intercross (n = 795) and identified three to eight genome-wide significant loci, the strongest on chromosome 7 containing tyrosinase (Tyr). Tyrosinase-negative mice showed significantly increased limbal lymph vascularized areas, a higher number of lymphatic vessel end points, and branching points and increased inflammation-induced lymphangiogenesis. These findings confirm that tyrosinase is a novel lymphangiogenesis regulator in developmental and inflammatory lymphangiogenesis. Our findings link melanin synthesis with lymphangiogenesis and open new treatment options in lymphangiogenesis-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajpath.2018.10.014DOI Listing

Publication Analysis

Top Keywords

tyrosinase novel
8
regulator developmental
8
developmental inflammatory
8
lymphangiogenesis
8
inflammatory lymphangiogenesis
8
lymphatic vessel
8
quantitative trait
8
lymphangiogenesis findings
8
novel endogenous
4
endogenous regulator
4

Similar Publications

Oxadiazole compounds are of great interest because they have a range of biological activities ranging from antioxidants to anticancer agents. Against this background, we wanted to demonstrate the antioxidant, enzyme inhibitory, and anticancer effects of 5(4-hydroxyphenyl)-2-(N-phenylamino)-1,3,4-oxadiazole (Hppo). Antioxidant abilities were measured through free radical scavenging and reducing power tests.

View Article and Find Full Text PDF

A series of novel phenylamino quinazolinone derivatives were designed and synthesized as potential tyrosinase inhibitors. Among these compounds, 9r emerged as the most potent derivative, exhibiting IC values of 17.02 ± 1.

View Article and Find Full Text PDF

Bacillus subtilis-derived-exopolysaccharide halts depigmentation and autoimmunity in vitiligo.

J Invest Dermatol

December 2024

Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago (IL), USA; Department of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA. Electronic address:

Vitiligo has a complex multifactorial etiology involving a T-cell mediated autoimmune response to cutaneous melanocytes. Microbial dysbiosis has been assigned a contributing role in vitiligo etiology. Treating vitiligo can be a challenging task and finding novel treatment approaches is crucial.

View Article and Find Full Text PDF

Integrative Omics and Gene Knockout Analyses Suggest a Possible Gossypol Detoxification Mechanism and Potential Key Regulatory Genes of a Ruminal Strain.

J Agric Food Chem

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Gossypol removal is crucial for the resourceful utilization of cottonseed meals in the food and feed industries. Herein, we investigated the comprehensive detoxification mechanism of a gossypol-tolerant strain of (WK331) newly isolated from the rumen. Biodegradation assays showed that WK331 removes over 80% of free gossypol, of which 50% was biodegraded and 30% was converted into bound gossypol.

View Article and Find Full Text PDF

Multifunctional ortho-quinones are required for the formation of thiol-catechol-connectivities (TCC) but can be delicate to handle. We present the electrochemical oxidation of the dipeptide DiDOPA, achieving up to 92% conversion efficiency of the catechols to ortho-quinones. Graphite and stainless steel could be employed as cost-efficient electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!