Neuroprotective and antihyperalgesic effects of orexin-A in rats with painful diabetic neuropathy.

Neuropeptides

Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran. Electronic address:

Published: February 2019

AI Article Synopsis

Article Abstract

Aim Of Study: Diabetes mellitus is related to the development of neuronal tissue injury in different peripheral and central nervous system regions. A common complication of diabetes is painful diabetic peripheral neuropathy (PDN). We have studied the neuroprotective and anti-nociceptive properties of neuropeptide orexin-A in an animal experimental model of diabetic neuropathy.

Methods: All experiments were carried out on male Wistar rats (220-250 g). Diabetes was induced by a single intraperitoneal injection of 55 mg/kg (i.p.) streptozotocin (STZ). Orexin-A was chronically administrated into the implanted intrathecal catheter (0.6, 2.5 and 5 nM/L, daily, 4 weeks). The tail-flick and rotarod treadmill tests were used to evaluate the nociceptive threshold and motor coordination of these diabetic rats, respectively. Cleaved caspase-3, Bax, Bcl2 and the Bax/Bcl-2 ratio, as the biochemical indicators of apoptosis, were investigated in the dorsal half of the lumbar spinal cord tissue by western blotting method.

Results: Treatment of the diabetic rats with orexin-A (5 nM/L) significantly attenuated the hyperalgesia and motor deficit in diabetic animals. Furthermore, orexin-A (5 nM/L) administration suppressed pro-apoptotic cleaved caspase-3 and Bax proteins. Also, orexin-A (5 nM/L) reduced the expression of Bax/Bcl-2 ratio in spinal cord dorsal half of rats with PDN.

Conclusions: Altogether our data suggest that the orexin-A has anti-hyperalgesic and neuroprotective effects in rats with PDN. Cellular mechanisms underlying the observed effects may, at least partially, be related to reducing the neuronal apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.npep.2018.11.001DOI Listing

Publication Analysis

Top Keywords

orexin-a 5 nm/l
12
painful diabetic
8
diabetic rats
8
cleaved caspase-3
8
caspase-3 bax
8
bax/bcl-2 ratio
8
dorsal half
8
spinal cord
8
orexin-a
7
rats
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!