The skin barrier protects the body from water loss, allergens, and pathogens. Profilaggrin is produced by differentiated keratinocytes and is processed into filaggrin monomers. These monomers cross-link keratin filaments and are also decomposed to natural moisturizing factors in the stratum corneum for skin hydration and barrier function. Deficits in FLG expression impair skin barrier function and underlie skin diseases such as dry skin and atopic dermatitis. However, intrinsic factors that regulate FLG expression and their mechanisms of action remain unknown. Here, we show that lysophosphatidic acid induces FLG expression in human keratinocytes via the LPAR1 and LPAR5 receptors and the downstream RHO-ROCK-SRF pathway. Comprehensive gene profiling analysis further showed that lysophosphatidic acid not only induces FLG expression but also facilitates keratinocyte differentiation. Moreover, lysophosphatidic acid treatment significantly up-regulated FLG production in a three-dimensional culture model of human skin and promoted barrier function in mouse skin in vivo. Thus, our work shows a previously unsuspected role for lysophosphatidic acid and its downstream signaling in the maintenance of skin homeostasis, which may serve as a novel therapeutic target for skin barrier dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2018.10.034DOI Listing

Publication Analysis

Top Keywords

skin barrier
16
barrier function
16
flg expression
16
lysophosphatidic acid
16
skin
10
keratinocyte differentiation
8
acid induces
8
induces flg
8
barrier
6
flg
5

Similar Publications

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Pathophysiology and Treatment of Psoriasis: From Clinical Practice to Basic Research.

Pharmaceutics

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.

Psoriasis, a chronic inflammatory dermatosis, represents a significant clinical challenge due to its complex pathogenesis and the limitations of existing therapeutic strategies. Current psoriasis diagnoses are primarily clinician-dependent, with instrumental diagnostics serving as adjuncts. Ongoing research is progressively deciphering its molecular underpinnings; the future of psoriasis diagnostics may involve genetic and immunological profiling to pinpoint biomarkers, enabling more accurate and timely interventions.

View Article and Find Full Text PDF

Pequi Pulp () Oil-Loaded Emulsions as Cosmetic Products for Topical Use.

Polymers (Basel)

January 2025

Departamento de Engenharia de Materiais, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil.

The pequi () is a typical fruit from the Brazilian Cerrado. From it, pequi pulp oil is extracted, a valuable product for cosmetic applications due to its high levels of unsaturated fatty acids and carotenoids. Carotenoids are antioxidant compounds that are easily oxidized.

View Article and Find Full Text PDF

The Potential Application of Nanocarriers in Delivering Topical Antioxidants.

Pharmaceuticals (Basel)

January 2025

Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia.

The imbalance in the production of reactive oxygen species (ROS) with endogenous antioxidant capacity leads to oxidative stress, which drives many disorders, especially in the skin. In such conditions, supplementing exogenous antioxidants may help the body prevent the negative effect of ROS. However, the skin, as the outermost barrier of the body, provides a perfect barricade, making the antioxidant delivery complicated.

View Article and Find Full Text PDF

Agomelatine (AGM) is an effective antidepressant with low oral bioavailability due to intensive hepatic metabolism. Transdermal administration of agomelatine may increase its bioavailability and reduce the doses necessary for therapeutic effects. However, transdermal delivery requires crossing the barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!