In recent years, considerable attention has been paid to chicken embryonic stem cells (ESCs) studies in relation to extensive applications in gene therapy and regenerative medicine. However, the approaches used are still immature. In this study, we showed that the chicken ESCs clones with a clear border can express alkaline phosphatase and marker proteins such as SSEA-1, SOX2, and OCT4 stably. In addition, culture medium containing 10 μmol/L of vitamin C (VC) could significantly promote the proliferation of ESCs cells. Moreover, ESCs transfected with p:enhanced green fluorescent protein (pEGFP)-hTERT could be subcultured more than tenth generations in culture medium containing exogenous factors (mLIF + bFGF + hSCF) and VC, and these ESCs clone could still be regenerated following cryopreservation. Quantitative real-time polymerase chain reaction results showed that there was no significant difference between SSEA-1, SOX2, and OCT4 expression during ESCs immortalization and that the tenth generation of ESCs was still able to express marker proteins SSEA-1, SOX2, and OCT4. Our results showed that an immobilized system for ESCs was established, and the ESCs were cultured in vitro maintaining their pluripotency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.27173 | DOI Listing |
Biomolecules
October 2024
Department of Gynecology and Obstetrics, Münster University Hospital, Labor PAN-Zentrum, Vesaliusweg 2-4, 48149 Münster, Germany.
Animals (Basel)
May 2024
Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
The utilization of chicken embryonic-derived pluripotent stem cell (PSC) lines is crucial in various fields, including growth and development, vaccine and protein production, and germplasm resource protection. However, the research foundation for chicken PSCs is relatively weak, and there are still challenges in establishing a stable and efficient PSC culture system. Therefore, this study aims to investigate the effects of the FGF2/ERK and WNT/β-catenin signaling pathways, as well as different feeder layers, on the derivation and maintenance of chicken embryonic-derived PSCs.
View Article and Find Full Text PDFStem Cell Reports
January 2024
The School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK. Electronic address:
The expression of one or more of a small number of molecules, typically cell surface-associated antigens, or transcription factors, is widely used for identifying pluripotent stem cells (PSCs) or for monitoring their differentiation. However, none of these marker molecules are uniquely expressed by PSCs and all are expressed by stem cells that have lost the ability to differentiate. Consequently, none are indicators of pluripotency, per se.
View Article and Find Full Text PDFTheriogenology
February 2024
Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China. Electronic address:
Chicken primordial germ cells (PGCs) are important cells with significant implications in preserving genetic resources, chicken breeding and production, and basic research on genetics and development. Currently, chicken PGCs can be cultured long-term in vitro to produce single-cell clones. However, systematic exploration of the cellular characteristics of these single-cell clonal lines has yet to be conducted.
View Article and Find Full Text PDFCancers (Basel)
September 2023
Laboratory of Hematology, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France.
Background: Embryonic antigens (EA) regulate pluripotency, self-renewal, and differentiation in embryonic stem (ES) cells during their development. In adult somatic cells, EA expression is normally inhibited; however, EAs can be re-expressed by cancer cells and are involved in the deregulation of different signaling pathways (SPs). In the context of AML, data concerning the expression of EAs are scarce and contradictory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!