Fraction unbound (f) is a critical drug distribution parameter commonly utilized for modeling efficacious dosage and safety margin predictions. An over-estimation of f for 13 chemically diverse small molecule drugs primarily bound to alpha-1-acid glycoprotein (AAG) in human plasma was discovered when in vitro results from our screening lab were compared to literature values. Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer known to be used in the manufacture of blood collection bags, was extracted from plasma obtained through three common techniques that allowed contact with DEHP, and drug f values in plasma from each collection method were estimated using the HTDialysis protein binding methodology. Additionally, f of test compounds in plasma spiked with varying concentrations of DEHP (0-800 μM) was determined, and DEHP extractions were performed from plasma stored in Terumo bags over 7 days. Blood stored in Terumo bags, blood collected in Terumo bags, but immediately transferred to conical vials, and vacutainer-collected blood yielded DEHP concentrations of 300-1000 μM, 1-10 μM, and 0.1-2 μM, respectively. This finding corresponded with the f of tested drugs in DEHP-spiked plasma increasing between 2- and 5-fold. Additionally, DEHP was discovered to leach from the Terumo bag, with concentrations increasing 10-fold over a 7-day test period. In summary, the presence of DEHP in commercially available blood collection bags confounds in vitro f estimation for drugs that bind primarily to AAG. It is recommended that vacutainer-collected human plasma, which contains negligible DEHP, be used for the most accurate estimation of f in human plasma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12248-018-0276-8 | DOI Listing |
Bioconjug Chem
January 2025
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5127, United States.
Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.
View Article and Find Full Text PDFActa Orthop Belg
December 2024
Percutaneous intra-meniscal platelet-rich plasma (PRP) is a promising tool for managing low-grade meniscal injuries in non-athletic patients. The study evaluates the clinical and radiological outcomes of PRP intra-meniscal injection in meniscal tears. Forty-eight patients were injected with 3 injections of PRP at an interval of one week with a standardised technique under sonographic guidance.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.
View Article and Find Full Text PDFBackground: The atherogenic index of plasma (AIP) is a newly identified metabolic marker for atherosclerosis. However, there are inconsistent conclusions regarding the relationship between AIP and hypertension.
Methods: The study subjects were sourced from the National Health and Nutrition Examination Survey (NHANES) database from 2017 to 2020.
Mol Biol Rep
January 2025
Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.
Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.
Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!