AI Article Synopsis

  • WRI1 is a key transcription factor that regulates oil accumulation in plants, with its evolution and characteristics not well understood prior to this study.
  • The research analyzed WRI1 and its homologs across 64 genome-sequenced plant species, finding that WRI1 likely originated from Chlorophyta and is crucial for vascular plants but not non-vascular ones.
  • The study highlights conserved elements and motifs across plant evolution, indicating a complex regulation of WRI1 involving various features that may play significant roles in fatty acid biosynthesis.

Article Abstract

WRINKLED1 (WRI1), an AP2/ERE transcription factor, is one of the most important regulators of oil accumulation. It has been extensively studied in angiosperms, but its evolution and overview features in plants remain unknown. In this study, WRI1s, as well as WRI1-likes in non-WRI1 species, were investigated in 64 genome-sequenced plants. Their origin, distribution, duplication, evolution, functional domains, motifs, properties, and cis-elements were analyzed. Results suggest that WRI1 and WRI1-like may originate from Chlorophyta, and WRI1-likes in angiosperms resemble phylogenetically and structurally WRI1s from Chlorophyta and non-vascular plants. WRI1 or WRI1-like may be essential to vascular plants but not to non-vascular plants. Two YRG elements and two RAYD elements, as well as their phosphorylation sites and the 14-3-3 binding motif, are relatively conserved from Chlorophyta to angiosperm. The predicted DNA-binding domains are slightly shorter than the combination of one YRG element and one RAYD element. WRI1 gradually evolves from alkalinity to acidity. More motifs were developed in N-terminuses and C-terminuses in vascular plants. A short acidic amino-acid-enriched domain in the C-terminal region is predicted to be the putative transactivation domain. The VYL exon appears randomly in different WRI1 transcripts and it is not important for the function of WRI1. In addition, more cis-elements developed during WRI1 evolution may suggest its more complicated regulation and physiological functions. These results will assist future function studies of WRI1 and evolution studies of fatty acid biosynthesis regulation in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00438-018-1512-8DOI Listing

Publication Analysis

Top Keywords

plants
8
wri1
8
wri1 wri1-like
8
non-vascular plants
8
vascular plants
8
wri1 evolution
8
evolution
5
genome-wide analysis
4
analysis reveals
4
reveals evolution
4

Similar Publications

Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.

Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.

View Article and Find Full Text PDF

Genome-wide development of simple sequence repeat (SSR) markers at 2-Mb intervals in lotus (Nelumbo Adans.).

BMC Genomics

January 2025

Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Road, Songjiang District, Shanghai, 201602, China.

Background: Despite the rapid advancement of high-throughput sequencing, simple sequence repeats (SSRs) remain indispensable molecular markers for various applied and research tasks owing to their cost-effectiveness and ease of use. However, existing SSR markers cannot meet the growing demand for research on lotus (Nelumbo Adans.) given their scarcity and weak connections to the lotus genome.

View Article and Find Full Text PDF

Genome-wide identification and expression analysis of the WRKY gene family in Mikania micrantha.

BMC Genomics

January 2025

College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.

Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.

View Article and Find Full Text PDF

Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.

View Article and Find Full Text PDF

Background: Geraniums (Pelargonium) are among the most popular flowers worldwide. Viral infection is one of the main problems of the genus Pelargonium, and the production of virus-free mother plants is necessary for large-scale geranium propagation and exchange. Meristem culture and thermotherapy are two effective procedures that have been widely adopted to produce healthy virus-free plant stocks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!