A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Linking bacterial community composition to soil salinity along environmental gradients. | LitMetric

Linking bacterial community composition to soil salinity along environmental gradients.

ISME J

Department of Biology, Section of Microbial Ecology, Lund University, Lund, Sweden.

Published: March 2019

Salinization is recognized as a threat to soil fertility worldwide. A challenge in understanding the effects of salinity on soil microbial communities is the fact that it can be difficult to disentangle the effects of salinity from those of other variables that may co-vary with salinity. Here we use a trait-based approach to identify direct effects of salinity on soil bacterial communities across two salinity gradients. Through dose-response relationships between salinity and bacterial growth, we quantified distributions of the trait salt tolerance within the communities. Community salt tolerance was closely correlated with soil salinity, indicating a strong filtering effect of salinity on the bacterial communities. Accompanying the increases in salt tolerance were consistent shifts in bacterial community composition. We identified specific bacterial taxa that increased in relative abundances with community salt tolerance, which could be used as bioindicators for high community salt tolerance. A strong filtering effect was also observed for pH across the gradients, with pH tolerance of bacterial communities correlated to soil pH. We propose phenotypic trait distributions aggregated at the community level as a useful approach to study the role of environmental factors as filters of microbial community composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461869PMC
http://dx.doi.org/10.1038/s41396-018-0313-8DOI Listing

Publication Analysis

Top Keywords

salt tolerance
20
community composition
12
effects salinity
12
bacterial communities
12
community salt
12
salinity
9
bacterial community
8
soil salinity
8
salinity soil
8
salinity bacterial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!