Theory assumes that fair trade among mutualists requires highly reliable communication. In plant-animal mutualisms the reliability of cues that indicate reward quality is often low. Therefore, it is controversial whether communication allows animal mutualists to regulate their reward intake. Here we show that even loose relationships between fruit brightness and nutritional rewards (r = 0.11-0.35) allow birds to regulate their nutrient intake across distinct European plant-frugivore networks. Resident, over-wintering generalist frugivores that interact with diverse plant species select bright, lipid-rich fruits, whereas migratory birds select dark, sugar- and antioxidant-rich fruits. Both nutritional strategies are consistent with previous physiological experiments suggesting that over-wintering generalists aim to maximize their energy intake, whereas migrants aim to enhance the build-up of body fat, their immune response and oxidative status during migration. Our results suggest that animal mutualists require only weak cues to regulate their reward intake according to specific nutritional strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240120 | PMC |
http://dx.doi.org/10.1038/s41467-018-07362-z | DOI Listing |
Under an adaptive hypothesis, the reciprocal influence between mutualistic plants and frugivores is expected to result in suites of matching frugivore and plant traits that structure fruit consumption. Recent work has suggested fruit traits can represent adaptations to broad groups of functionally similar frugivores, but the role of frugivore traits and within-species variation in structuring fruit consumption is less understood. To address these knowledge gaps, we assess the presence of reciprocal trait matching for the mutualistic ecological network comprising of bats that feed on and disperse seeds.
View Article and Find Full Text PDFEcol Lett
January 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
Biotic interactions play an important role in species diversification and maintenance and, thus, are regarded as the architecture of biodiversity. Since Darwin and Wallace, biologists have debated whether biotic interactions are stronger towards the tropics and on continents, when compared to temperate regions and islands. Here, based on 354 avian frugivory networks accounting for 22,199 interactions between 1247 bird species and 2126 plant species, we quantified trait matching strength, which reflects interaction strength and specificity, across gradients of latitude and insularity globally.
View Article and Find Full Text PDFEcol Appl
December 2024
Programa de Pós-graduação em Ecologia, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
Invasive non-native species are one of the main causes of degradation of ecosystems worldwide. The control of invasive species is key to reducing threats to ecosystem viability in the long term. Observations of structural changes in ecological interaction networks following invasive species suppression can be useful to monitor the success of ecological restoration initiatives.
View Article and Find Full Text PDFEcology
February 2024
Zhejiang Zhoushan Archipelago Observation and Research Station, Institute of Eco-Chongming, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.
Seed dispersal by frugivorous birds facilitates plant invasions, but it is poorly known how invasive plants integrate into native communities in fragmented landscapes. We surveyed plant-frugivore interactions, including an invasive plant (Phytolacca americana), on 22 artificial land-bridge islands (fragmented forests) in the Thousand Island Lake, China. Focusing on frugivory interactions that may lead to seed dispersal, we built ecological networks of studied islands both at the local island (community) and at landscape (metacommunity) levels.
View Article and Find Full Text PDFProc Biol Sci
May 2023
Estación Biológica de Doñana, CSIC, Av. Americo Vespucio 26, 41092 Sevilla, Spain.
Plant-animal mutualisms such as seed dispersal are key interactions for sustaining plant range shifts. It remains elusive whether the organization of interactions with seed dispersers is reconfigured along the expansion landscape template and, if so, whether its effects accelerate or slow colonization. Here we analyse plant-frugivore interactions in a scenario of rapid population expansion of a Mediterranean juniper.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!