The mechanisms that integrate environmental signals into developmental programs remain largely uncharacterized. Nuclear receptors (NRs) are ligand-regulated transcription factors that orchestrate the expression of complex phenotypes. The vitamin D receptor (VDR) is an NR activated by 1α,25-dihydroxyvitamin D [1,25(OH)D], a hormone derived from 7-dehydrocholesterol (7-DHC). VDR signaling is best known for regulating calcium homeostasis in mammals, but recent evidence suggests a diversity of uncharacterized roles. In response to incubation temperature, embryos of the annual killifish can develop along two alternative trajectories: active development and diapause. These trajectories diverge early in development, from a biochemical, morphological, and physiological perspective. We manipulated incubation temperature to induce the two trajectories and profiled changes in gene expression using RNA sequencing and weighted gene coexpression network analysis. We report that transcripts involved in 1,25(OH)D synthesis and signaling are expressed in a trajectory-specific manner. Furthermore, exposure of embryos to vitamin D analogs and Δ4-dafachronic acid directs continuous development under diapause-inducing conditions. Conversely, blocking synthesis of 1,25(OH)D induces diapause in and a diapause-like state in zebrafish, suggesting vitamin D signaling is critical for normal vertebrate development. These data support vitamin D signaling as a molecular pathway that can regulate developmental trajectory and metabolic dormancy in a vertebrate. Interestingly, the VDR is homologous to the daf-12 and ecdysone NRs that regulate dormancy in and We suggest that 7-DHC-derived hormones and their associated NRs represent a conserved pathway for the integration of environmental information into developmental programs associated with life history transitions in animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294931 | PMC |
http://dx.doi.org/10.1073/pnas.1804590115 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!