A finely tuned balance of self-renewal, differentiation, proliferation, and survival governs the pool size and regenerative capacity of blood-forming hematopoietic stem and progenitor cells (HSPCs). Here, we report that protein kinase C delta (PKCδ) is a critical regulator of adult HSPC number and function that couples the proliferative and metabolic activities of HSPCs. PKCδ-deficient mice showed a pronounced increase in HSPC numbers, increased competence in reconstituting lethally irradiated recipients, enhanced long-term competitive advantage in serial transplantation studies, and an augmented HSPC recovery during stress. PKCδ-deficient HSPCs also showed accelerated proliferation and reduced apoptosis, but did not exhaust in serial transplant assays or induce leukemia. Using inducible knockout and transplantation models, we further found that PKCδ acts in a hematopoietic cell-intrinsic manner to restrict HSPC number and bone marrow regenerative function. Mechanistically, PKCδ regulates HSPC energy metabolism and coordinately governs multiple regulators within signaling pathways implicated in HSPC homeostasis. Together, these data identify PKCδ as a critical regulator of HSPC signaling and metabolism that acts to limit HSPC expansion in response to physiological and regenerative demands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293338PMC
http://dx.doi.org/10.15252/embj.2018100409DOI Listing

Publication Analysis

Top Keywords

pkcδ critical
8
critical regulator
8
hspc
8
hspc number
8
attenuation pkcδ
4
pkcδ enhances
4
enhances metabolic
4
metabolic activity
4
activity promotes
4
promotes expansion
4

Similar Publications

Background: Cancer is a leading cause of global mortality, accounting for nearly 10 million deaths in 2020. This is projected to increase by more than 60% by 2040, particularly in low- and middle-income countries. Yet, palliative and psychosocial oncology care is very limited in these countries.

View Article and Find Full Text PDF

We derive a refined version of the Affleck-Ludwig-Cardy formula for a 1+1D conformal field theory, which controls the asymptotic density of high energy states on an interval transforming under a given representation of a noninvertible global symmetry. We use this to determine the universal leading and subleading contributions to the noninvertible symmetry-resolved entanglement entropy of a single interval. As a concrete example, we show that the ground state entanglement Hamiltonian for a single interval in the critical double Ising model enjoys a Kac-Paljutkin H_{8} Hopf algebra symmetry when the boundary conditions at the entangling points are chosen to preserve the product of two Kramers-Wannier symmetries, and we present the corresponding symmetry-resolved entanglement entropies.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is a common complication in hospitalized older patients, associated with increased morbidity, mortality, and health care costs. Major adverse kidney events within 30 days (MAKE30), a composite of death, new renal replacement therapy, or persistent renal dysfunction, has been recommended as a patient-centered endpoint for clinical trials involving AKI.

Objective: This study aimed to develop and validate a machine learning-based model to predict MAKE30 in hospitalized older patients with AKI.

View Article and Find Full Text PDF

Research Participants' Engagement and Retention in Digital Health Interventions Research: Protocol for Mixed Methods Systematic Review.

JMIR Res Protoc

January 2025

Department of Women's and Children's Health, Participatory eHealth and Health Data Research Group, Uppsala University, Uppsala, Sweden.

Background: Digital health interventions have become increasingly popular in recent years, expanding the possibilities for treatment for various patient groups. In clinical research, while the design of the intervention receives close attention, challenges with research participant engagement and retention persist. This may be partially due to the use of digital health platforms, which may lack adequacy for participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!