Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Amphibious fishes have evolved multiple adaptive strategies for respiring out of water, but there has been less focus on reversible plasticity. We tested the hypothesis that when amphibious fishes leave water, enhanced respiratory performance on land is the result of rapid functional phenotypic flexibility of respiratory traits. We acclimated four isogenic strains of to air for 0, 1, 3 or 7 days. We compared respiratory performance out of water with traits linked to the O cascade. Aerial O consumption rate was measured over a step-wise decrease in O levels. There were significant differences between strains, but time out of water had the largest impact on measured parameters. had improved respiratory performance [lower aerial critical oxygen tension (), higher regulation index (RI)] after only 1 day of air exposure, and these changes were strongly associated with the change in hematocrit and dorsal cutaneous angiogenesis. Additionally, we found that 1 h of air exposure induced the expression of four angiogenesis-associated genes - , , and - in the skin. After 7 days in air, respiratory traits were not significantly linked to the variation in either aerial or RI. Overall, our data indicate that there are two phases involved in the enhancement of aerial respiration: an initial rapid response (1 day) and a delayed response (7 days). We found evidence for the hypothesis that respiratory performance on land in amphibious fishes is the result of rapid flexibility in both O uptake and O carrying capacity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6361105 | PMC |
http://dx.doi.org/10.1242/jeb.186486 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!