Signaling Size: Ankyrin and SOCS Box-Containing ASB E3 Ligases in Action.

Trends Biochem Sci

Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands. Electronic address:

Published: January 2019

Ankyrin repeat and suppressor of cytokine signaling (SOCS) box (Asb) proteins are ubiquitin E3 ligases. The subfamily of six-ankyrin repeat domain-containing Asb proteins (Asb5, Asb9, Asb11, and Asb13) is of specific interest because they display unusual strong evolutionary conservation (e.g., urochordate and human ASB11 are >49% similar at the amino acid level) and mediate compartment size expansion, regulating, for instance, the size of the brain and muscle compartment. Thus, they may be involved in the explanation of the differences in brain size between humans and apes. Mechanistically, many questions remain, but it has become clear that regulation of canonical Notch signaling and also mitochondrial function are important effectors. Here, we review the action and function of six ankyrin repeat domain-containing Asb proteins in physiology and pathophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tibs.2018.10.003DOI Listing

Publication Analysis

Top Keywords

asb proteins
12
ankyrin repeat
8
repeat domain-containing
8
domain-containing asb
8
signaling size
4
size ankyrin
4
ankyrin socs
4
socs box-containing
4
asb
4
box-containing asb
4

Similar Publications

ALDH Enzymes and Hematological Diseases: A Scoping Review of Literature.

Discov Med

December 2024

Department of Biological Hematology, Tours University Hospital, 37000 Tours, France.

Aldehyde dehydrogenases (ALDHs) constitute a group of enzymes that catalyze the oxidation of aldehydes to carboxylic acids. The human ALDH superfamily, including 19 different isoenzymes (ALDH1A1, ALDH1A2, ALDH1A3, AHDH1B1, ALDH1L1, ALDH1L2, ALDH2, ALDH3A1, ALDH3A2, ALDH3B1, ALDH3B2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1, ALDH8A1, ALDH9A1, ALDHA16A1, ALDH18A1), displays different key physiological and toxicological functions, with specific tissue expression and substrate specificity. Several studies have established that ALDH are interesting markers for the identification and quantification of human hematopoietic stem cells and cancer stem cells, notably leukemic stem cells.

View Article and Find Full Text PDF

Sickle Trait and Alpha Thalassemia Increase NOS-Dependent Vasodilation of Human Arteries Through Disruption of Endothelial Hemoglobin-eNOS Interactions.

Circulation

January 2025

Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD.

Background: Severe malaria is associated with impaired nitric oxide (NO) synthase (NOS)-dependent vasodilation, and reversal of this deficit improves survival in murine models. Malaria might have selected for genetic polymorphisms that increase endothelial NO signaling and now contribute to heterogeneity in vascular function among humans. One protein potentially selected for is alpha globin, which, in mouse models, interacts with endothelial NOS (eNOS) to negatively regulate NO signaling.

View Article and Find Full Text PDF

Neuroinflammation in the central nervous system (CNS), driven largely by resident phagocytes, has been proposed as a significant contributor to disability accumulation in multiple sclerosis (MS) but has not been addressed therapeutically. Bruton's tyrosine kinase (BTK) is expressed in both B-lymphocytes and innate immune cells, including microglia, where its role is poorly understood. BTK inhibition may provide therapeutic benefit within the CNS by targeting adaptive and innate immunity-mediated disease progression in MS.

View Article and Find Full Text PDF
Article Synopsis
  • The chromosome-19 miRNA cluster (C19MC) plays a role in how certain viruses affect multinucleated cells in the placenta, but its connection to multinucleation was previously unclear.
  • Researchers found that C19MC is linked to meiosis-related genes and discovered a new process called meiosis-III, where nuclear division and cell division happen together to create multinucleated cells.
  • The study shows that C19MC is crucial for a structure called nucle(ol)ar invasive cytoplasm (NiC) which helps in the division of nuclei and supports the creation of multinucleated cells, providing insights for cancer research, virus interactions, and potential therapies.
View Article and Find Full Text PDF

Background: Transcription factors (TFs) bind to DNA in a highly sequence-specific manner. This specificity manifests itself in vivo as differences in TF occupancy between the two alleles at heterozygous loci. Genome-scale assays such as ChIP-seq currently are limited in their power to detect allele-specific binding (ASB) both in terms of read coverage and representation of individual variants in the cell lines used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!