Glucuronoxylan selectively 3-O-acetylated on uronic acid-substituted xylopyranosyl residues was prepared by deacetylation of steam explosion-extracted aspenwood acetylglucuronoxylan by the CE6 acetylxylan esterase from Orpinomyces sp. The 3-O-acetylation of MeGlcA-substituted xylopyranosyl residues did not influence the mode of action of GH10, 11 and 30 xylanases, resulting in similar aldouronic acids as are found in alkali-extracted glucuronoxylan hydrolysates. In all three hydrolysates of the selectively acetylated glucuronoxylan, however, 3-O-acetylated aldouronic acids predominated over non-acetylated ones, suggesting that in native aspenwood xylan almost all MeGlcA-substituted Xylp residues are 3-O-acetylated. The results contribute to current knowledge of the mode of action of xylanases and also point to a possibility to produce novel types of xylooligosaccharides. The 3-O-acetylated aldouronic acids, along with the specifically 3-O-acetylated glucuronoxylan, may serve as model substrates for searching for a novel type of esterase able to liberate this MeGlcA-shielded acetyl group. Such esterases are important to improve significantly saccharification yields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2018.10.043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!