Background: One challenge in moving towards malaria elimination is cross-border malaria infection. The implemented measures to prevent and control malaria re-introduction across the demarcation line between two countries require intensive analyses and interpretation of data from both sides, particularly in border areas, to make correct and timely decisions. Reliable maps of projected malaria distribution can help to direct intervention strategies. In this study, a Bayesian spatiotemporal analytic model was proposed for analysing and generating aggregated malaria risk maps based on the exceedance probability of malaria infection in the township-district adjacent to the border between Myanmar and Thailand. Data of individual malaria cases in Hlaingbwe Township and Tha-Song-Yang District during 2016 were extracted from routine malaria surveillance databases. Bayesian zero-inflated Poisson model was developed to identify spatial and temporal distributions and associations between malaria infections and risk factors. Maps of the descriptive statistics and posterior distribution of predicted malaria infections were also developed.

Results: A similar seasonal pattern of malaria was observed in both Hlaingbwe Township and Tha-Song-Yang District during the rainy season. The analytic model indicated more cases of malaria among males and individuals aged ≥ 15 years. Mapping of aggregated risk revealed consistently high or low probabilities of malaria infection in certain village tracts or villages in interior parts of each country, with higher probability in village tracts/villages adjacent to the border in places where it could easily be crossed; some border locations with high mountains or dense forests appeared to have fewer malaria cases. The probability of becoming a hotspot cluster varied among village tracts/villages over the year, and some had close to no cases all year.

Conclusions: The analytic model developed in this study could be used for assessing the probability of hotspot cluster, which would be beneficial for setting priorities and timely preventive actions in such hotspot cluster areas. This approach might help to accelerate reaching the common goal of malaria elimination in the two countries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6240260PMC
http://dx.doi.org/10.1186/s12936-018-2574-0DOI Listing

Publication Analysis

Top Keywords

malaria
16
malaria infection
16
hlaingbwe township
12
tha-song-yang district
12
analytic model
12
hotspot cluster
12
bayesian spatiotemporal
8
malaria elimination
8
adjacent border
8
malaria cases
8

Similar Publications

Malaria remains a significant public health challenge, particularly in low- and middle-income countries, despite ongoing efforts to eradicate the disease. Recent advancements, including the rollout of malaria vaccines, such as RTS,S/AS01 and R21/Matrix-M™, offer new avenues for prevention. However, the rise of resistance to anti-malarial medications necessitates innovative strategies.

View Article and Find Full Text PDF

Background: Visceral leishmaniasis is endemic in Ethiopia and caused by Leishmania donovani. Although the disease manifests with significant clinical variability, a substantial number of individuals are asymptomatic. These individuals can serve as reservoirs, complicating control efforts.

View Article and Find Full Text PDF

Genome-scale, functional screen of Plasmodium sexual replication.

Trends Parasitol

January 2025

Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA. Electronic address:

Malaria mortality remains above 500 000 people annually, demonstrating the need for new and innovative control approaches. Using a genome-scale, functional screen of Plasmodium sexual replication, Sayers et al. identified over 300 genes essential for malaria transmission through the mosquito, providing many new candidates for drug and vaccine development.

View Article and Find Full Text PDF

Eleven countries have been certified as malaria free since 2016, but none of these are in subSaharan Africa where elimination challenges are unique. The 1-3-7 focus investigation approach is an implementation strategy that requires case reporting, case investigation/classification, and focal classification/response to be completed one, three, and seven days, respectively, after index case diagnosis. Real-time short-messaging-service reports are sent at each step to add accountability and data transparency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!