A rapid and economical method for the quantification of hydrogen peroxide (HO) using a modified HPLC apparatus.

Sci Total Environ

American University of Beirut, Faculty of Arts and Sciences, Department of Chemistry, P.O. Box 11-0236, Riad El Solh, 1107-2020 Beirut, Lebanon. Electronic address:

Published: March 2019

AI Article Synopsis

  • HO (hydrogen peroxide) is frequently used in advanced oxidation processes (AOPs) to break down tough organic contaminants, but previous research has often overlooked measuring remaining HO levels, which is crucial for evaluating process efficiency.
  • A new method for quantifying HO was developed using modifications to a common HPLC-DAD setup, including acidified potassium iodide as the mobile phase and capillary columns, enabling the analysis of both HO and organic contaminants in the same sample.
  • The method demonstrated strong performance with low limits of detection and quantification, cost-effective analysis, and robustness across various natural water matrices, validated against traditional methods.

Article Abstract

HO is one of the most commonly used oxidants for the degradation of recalcitrant organic contaminants in advanced oxidation processes (AOPs). However, most research aiming to optimize AOPs is missing the monitoring of the remaining HO, an important parameter to assess the efficiency of the process. In this work, a novel method for [HO] quantification was developed using simple modifications of an HPLC-DAD setup that is available in most analytical chemistry laboratories. The modifications include the use of acidified potassium iodide solution as mobile phase and replacing the reverse phase column with a series of capillary columns. This instrument configuration allowed also the quantification of organic contaminants using the same HO containing sample. The method's LOD and LOQ were calculated to be as low as 8.29 × 10 mM and 2.76 × 10 mM, respectively with an LDR range of 0.01-150 mM. The cost per analysis ranged between 0.8 and 1.8 USD cents depending on the concentration tested. This analytical method was validated by a statistical comparison to a well-known titrimetric method that is commonly used for HO quantification. It was also tested using standards prepared in natural matrices such as spring and seawater, and in media containing high concentration of several spectator species such as chlorides, bicarbonates, humic acids, fumaric acids and micro pollutants. The method showed excellent robustness by maintaining high regression coefficient and excellent sensitivity in all calibration curves regardless of the matrix content.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.10.372DOI Listing

Publication Analysis

Top Keywords

organic contaminants
8
method
5
rapid economical
4
economical method
4
quantification
4
method quantification
4
quantification hydrogen
4
hydrogen peroxide
4
peroxide modified
4
modified hplc
4

Similar Publications

Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.

View Article and Find Full Text PDF

An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.

View Article and Find Full Text PDF

() is a major pathogenic bacterium responsible for bacterial foodborne diseases, making its rapid, specific, and accurate detection crucial. In this study, we develop a ratiometric biosensor based on the recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats/CRISPR associated protein 12a (RPA-CRISPR/Cas12a) system and Eu-metal-organic framework (Eu-MOF) fluorescent nanomaterials for the high-sensitivity detection of , combining with RPA for efficient isothermal amplification, this sensor enhances specificity and sensitivity by utilizing the target activation of CRISPR/Cas12a. The Eu-MOF serves a dual function, providing stable red fluorescence as a reference signal and adsorbing FAM-labeled probes for fluorescence quenching, forming a dual-signal system that significantly reduces background interference.

View Article and Find Full Text PDF

New Insights on Iron-Trimesate MOFs for Inorganic As(III) and As(V) Adsorption from Aqueous Media.

Nanomaterials (Basel)

December 2024

Unidad Departamental de Química Analítica, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Spain.

Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive properties. In this study, the performance of a synthesized Nano-{Fe-BTC} MOF, containing iron oxide octahedral chains connected by trimesic acid linkers, in adsorbing As(III) and As(V) species was investigated and compared with commercial BasoliteF300 MOF.

View Article and Find Full Text PDF

This review explores biochar's potential as a sustainable and cost-effective solution for remediating organic pollutants, particularly polycyclic aromatic hydrocarbons (PAHs) and pesticides, in water. Biochar, a carbon-rich material produced from biomass pyrolysis, has demonstrated adsorption efficiencies exceeding 90% under optimal conditions, depending on the feedstock type, pyrolysis temperature, and functionalization. High surface area (up to 1500 m/g), porosity, and modifiable surface functional groups make biochar effective in adsorbing a wide range of contaminants, including toxic metals, organic pollutants, and nutrients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!