Perfusion of the peptide, arginine vasopressin (AVP), within the ventral septal area (VSA) of the brain of a number of species reduces fever but not normal body temperature. This antipyretic response appears to be mediated by AVP receptors of the V1 subtype. Lesions of the VSA with kainic acid are associated with prolonged and enhanced fevers in rats. A role for endogenous AVP in fever suppression within the VSA comes from several types of experiments: (1) AVP release within the VSA is inversely correlated to fever height; (2) AVP antagonists or antiserum injected into the VSA prolong fever; (3) animals lacking endogenous AVP in the VSA (Brattleboro rat, long-term castrated rat) develop enhanced fevers. Electrical stimulation of the AVP-containing cell bodies of the bed nucleus of the stria terminalis (BST) orthodromically inhibits VSA neurons and also suppresses fever; the latter effect can be abolished with application of a V1 antagonist to the VSA. Iontophoretic studies indicate that AVP inhibits glutamate-stimulated activity of thermoresponsive and other VSA neurons. AVP can also act in the VSA to cause severe motor disturbances; this action is receptor mediated and increases in severity upon sequential exposure to AVP. Because sites of action of the antipyretic and convulsive action of AVP are similar, and because animals lacking brain AVP display reduced convulsive activity, it is possible that AVP, released during fever, could be involved in the genesis of convulsive activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0361-9230(88)90106-2DOI Listing

Publication Analysis

Top Keywords

avp
12
vsa
10
ventral septal
8
septal area
8
enhanced fevers
8
endogenous avp
8
animals lacking
8
avp vsa
8
vsa neurons
8
convulsive activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!