Background: There is inadequate evidence to determine whether there is an effect of alcohol consumption on lung cancer risk. We conducted a pooled analysis of data from the International Lung Cancer Consortium and the SYNERGY study to investigate this possible association by type of beverage with adjustment for other potential confounders.
Methods: Twenty one case-control studies and one cohort study with alcohol-intake data obtained from questionnaires were included in this pooled analysis (19,149 cases and 362,340 controls). Adjusted odds ratios (OR) or hazard ratios (HR) with corresponding 95% confidence intervals (CI) were estimated for each measure of alcohol consumption. Effect estimates were combined using random or fixed-effects models where appropriate. Associations were examined for overall lung cancer and by histological type.
Results: We observed an inverse association between overall risk of lung cancer and consumption of alcoholic beverages compared to non-drinkers, but the association was not monotonic. The lowest risk was observed for persons who consumed 10-19.9 g/day ethanol (OR vs. non-drinkers = 0.78; 95% CI: 0.67, 0.91), where 1 drink is approximately 12-15 g. This J-shaped association was most prominent for squamous cell carcinoma (SCC). The association with all lung cancer varied little by type of alcoholic beverage, but there were notable differences for SCC. We observed an association with beer intake (OR for ≥20 g/day vs nondrinker = 1.42; 95% CI: 1.06, 1.90).
Conclusions: Whether the non-monotonic associations we observed or the positive association between beer drinking and squamous cell carcinoma reflect real effects await future analyses and insights about possible biological mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662590 | PMC |
http://dx.doi.org/10.1016/j.canep.2018.10.006 | DOI Listing |
Sci Rep
December 2024
Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ, USA.
Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
Evaluating the effectiveness of cancer treatments in relation to specific tumor mutations is essential for improving patient outcomes and advancing the field of precision medicine. Here we represent a comprehensive analysis of 78,287 U.S.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!