A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantum mechanical tunnelling through the catalytic effects of A2451 ribosomal residue during a stepwise peptide bond formation. | LitMetric

The search for the mechanism of ribosomal peptide bond formation is still ongoing. Even though the actual mechanism of peptide bod formation is still unknown, the dominance of proton transfer in this reaction is known for certain. Therefore, it is vital to take the quantum mechanical effects on proton transfer reaction into consideration; the effects of which were neglected in all previous studies. In this study, we have taken such effects into consideration using a semi-classical approach to the overall reaction mechanism. The M06-2X density functional with the 6-31++G(d,p) basis set was used to calculate the energies of the critical points on the potential energy surface of the reaction mechanism, which are then used in transition state theory to calculate the classical reaction rate. The tunnelling contribution is then added to the classical part by calculating the transmission permeability and tunnelling constant of the reaction barrier, using the numerical integration over the Boltzmann distribution for the symmetrical Eckart potential. The results of this study, which accounts for quantum effects, indicates that the A2451 ribosomal residue induces proton tunnelling in a stepwise peptide bond formation.

Download full-text PDF

Source
http://dx.doi.org/10.1139/bcb-2018-0220DOI Listing

Publication Analysis

Top Keywords

peptide bond
12
bond formation
12
quantum mechanical
8
a2451 ribosomal
8
ribosomal residue
8
stepwise peptide
8
proton transfer
8
transfer reaction
8
reaction mechanism
8
reaction
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!