Temporal and Reversible Control of a DNAzyme by Orthogonal Photoswitching.

J Am Chem Soc

LIMES Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Straße 1 , 53121 Bonn , Germany.

Published: December 2018

The reversible switching of catalytic systems capable of performing complex DNA  computing operations using the temporal control of two orthogonal photoswitches is described. Two distinct photoresponsive molecules have been separately incorporated into a split horseradish peroxidase-mimicking DNAzyme. We show that its catalytic function can be turned on and off reversibly upon irradiation with specific wavelengths of light. The system responds orthogonally  to a  selection of irradiation wavelengths    and   durations of irradiation. Furthermore, the DNAzyme exhibits reversible switching and retains this ability throughout multiple switching cycles. We apply our system as a light-controlled 4:2 multiplexer. Orthogonally photoswitchable DNAzyme-based catalysts as introduced here have potential use for controlling complex logical operations and for future applications in DNA nanodevices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b08738DOI Listing

Publication Analysis

Top Keywords

reversible switching
8
temporal reversible
4
reversible control
4
control dnazyme
4
dnazyme orthogonal
4
orthogonal photoswitching
4
photoswitching reversible
4
switching catalytic
4
catalytic systems
4
systems capable
4

Similar Publications

New flow control elements in capillaric circuits are key to achieving ever more complex lab-on-a-chip functionality while maintaining their autonomous and easy-to-use nature. Capillary field effect transistors valves allow for flow in channels to be restricted and cut off utilising a high pressure triggering channel and occluding air bubble. The reversible capillary field effect transistor presented here provides a new element that can restore fluid flow in closed microchannels autonomous circuit feedback.

View Article and Find Full Text PDF

High-performance solid-state proton gating membranes based on two-dimensional hydrogen-bonded organic framework composites.

Nat Commun

January 2025

Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.

Biological ion channels exhibit strong gating effects due to their zero-current closed states. However, the gating capabilities of artificial nanochannels have typically fallen short of biological channels, primarily owing to the larger nanopores that fail to completely block ion transport in the off-states. Here, we demonstrate solid-state hydrogen-bonded organic frameworks-based membranes to achieve high-performance ambient humidity-controlled proton gating, accomplished by switching the proton transport pathway instead of relying on conventional ion blockage/activation effects.

View Article and Find Full Text PDF

The amorphous/crystalline (A/C) assembly in molecular solids has a direct bearing on their attributes and applications, including mechanical, pharmaceutical, electronic and photophysical.  A systematic analysis of the molecular features and interactions that determine the predilection towards the A, C or bi-stable A-C states is critical.  This fundamental problem is addressed through an exhaustive investigation of a large family of alkoxyalkyl diaminodicyanoquinodimethanes (ROR'-DADQs); enhancement of their fluorescence from the solution, to the A, to the C state serves as an excellent signature of the phase preference and temporal stability.

View Article and Find Full Text PDF

Understanding the reversible transformation between two isomeric states of organic molecules under external stimulation is essential for advancing single-molecule device development. Photochromic diarylethene (DAE) derivatives are promising candidates for single molecular switching elements. This study investigates the single-molecule reactions of the closed-form isomer of a DAE derivative on Cu(111) using scanning tunneling microscopy (STM).

View Article and Find Full Text PDF

The development of molecular species with switchable magnetic properties has been a long-standing challenge in chemistry. One approach involves binding an analyte, such as protons, to a compound to trigger a change in magnetism. Transition metal complexes have been targeted for this type of magnetic modulation because they can undergo changes in their spin states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!