Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We address a long-standing debate regarding the finite-size scaling (FSS) of the Ising model in high dimensions, by introducing a random-length random walk model, which we then study rigorously. We prove that this model exhibits the same universal FSS behavior previously conjectured for the self-avoiding walk and Ising model on finite boxes in high-dimensional lattices. Our results show that the mean walk length of the random walk model controls the scaling behavior of the corresponding Green's function. We numerically demonstrate the universality of our rigorous findings by extensive Monte Carlo simulations of the Ising model and self-avoiding walk on five-dimensional hypercubic lattices with free and periodic boundaries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.185701 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!