Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Acridine adds secondary phosphine chalcogenides HP(X)R (X = O, S, Se; R = Ar, ArAlk) under catalyst-free conditions at 70-75 °C (both in the presence and absence of the electron-deficient acetylenes) to give 9-chalcogenophosphoryl-9,10-dihydroacridines in 61-94% yields. This contrasts with pyridines, which under similar conditions undergo an SAr reaction, wherein electron-deficient acetylenes play the role of oxidants. For acridine, the SAr step has been accomplished by the oxidation of the intermediate 9-phosphoryl-9,10-dihydroacridines (X = O) with chloranil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.8b03061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!