Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dicoumarol is frequently used as inhibitor of the detoxifying enzyme NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1). In order to test whether dicoumarol may also affect the cellular glutathione (GSH) metabolism, we have exposed cultured primary astrocytes to dicoumarol and investigated potential effects of this compound on the cell viability as well as on the cellular and extracellular contents of GSH and its metabolites. Incubation of astrocytes with dicoumarol in concentrations of up to 100 µM did not acutely compromise cell viability nor was any GSH consumption or GSH oxidation to glutathione disulfide (GSSG) observed. However, unexpectedly dicoumarol inhibited the cellular multidrug resistance protein (Mrp) 1-dependent export of GSH in a time- and concentration-dependent manner with half-maximal effects observed at low micromolar concentrations of dicoumarol. Inhibition of GSH export by dicoumarol was not additive to that observed for the known Mrp1 inhibitor MK571. In addition, dicoumarol inhibited also the Mrp1-mediated export of GSSG during menadione-induced oxidative stress and the export of the GSH-bimane-conjugate (GS-B) that had been generated in the cells after exposure to monochlorobimane. Half-maximal inhibition of the export of Mrp1 substrates was observed at dicoumarol concentrations of around 4 µM (GSH and GSSG) and 30 µM (GS-B). These data demonstrate that dicoumarol strongly affects the GSH metabolism of viable cultured astrocytes by inhibiting Mrp1-mediated export processes and identifies for the first time Mrp1 as additional cellular target of dicoumarol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-018-2680-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!