We present a novel framework to parameterise a mathematical model of cell invasion that describes how a population of melanoma cells invades into human skin tissue. Using simple experimental data extracted from complex experimental images, we estimate three model parameters: (i) the melanoma cell proliferation rate, [Formula: see text]; (ii) the melanoma cell diffusivity, D; and (iii) [Formula: see text], a constant that determines the rate that melanoma cells degrade the skin tissue. The Bayesian sequential learning framework involves a sequence of increasingly sophisticated experimental data from: (i) a spatially uniform cell proliferation assay; (ii) a two-dimensional circular barrier assay; and (iii) a three-dimensional invasion assay. The Bayesian sequential learning approach leads to well-defined parameter estimates. In contrast, taking a naive approach that attempts to estimate all parameters from a single set of images from the same experiment fails to produce meaningful results. Overall, our approach to inference is simple-to-implement, computationally efficient, and well suited for many cell biology phenomena that can be described by low-dimensional continuum models using ordinary differential equations and partial differential equations. We anticipate that this Bayesian sequential learning framework will be relevant in other biological contexts where it is challenging to extract detailed, quantitative biological measurements from experimental images and so we must rely on using relatively simple measurements from complex images.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11538-018-0532-1DOI Listing

Publication Analysis

Top Keywords

bayesian sequential
16
sequential learning
16
learning framework
12
framework parameterise
8
continuum models
8
human skin
8
melanoma cells
8
skin tissue
8
experimental data
8
experimental images
8

Similar Publications

Predicting cancer-associated clinical events is challenging in oncology. In Multiple Myeloma (MM), a cancer of plasma cells, disease progression is determined by changes in biomarkers, such as serum concentration of the paraprotein secreted by plasma cells (M-protein). Therefore, the time-dependent behavior of M-protein and the transition across lines of therapy (LoT), which may be a consequence of disease progression, should be accounted for in statistical models to predict relevant clinical outcomes.

View Article and Find Full Text PDF

Introduction: To interact with the environment, it is crucial to distinguish between sensory information that is externally generated and inputs that are self-generated. The sensory consequences of one's own movements tend to induce attenuated behavioral- and neural responses compared to externally generated inputs. We propose a computational model of sensory attenuation (SA) based on Bayesian Causal Inference, where SA occurs when an internal cause for sensory information is inferred.

View Article and Find Full Text PDF

Optimizing complex systems usually involves costly and time-consuming experiments, where selecting the experiments to perform is fundamental. Bayesian optimization (BO) has proved to be a suitable optimization method in these situations thanks to its sample efficiency and principled way of learning from previous data, but it typically requires that experiments are sequentially performed. Fully distributed BO addresses the need for efficient parallel and asynchronous active search, especially where traditional centralized BO faces limitations concerning privacy in federated learning and resource utilization in high-performance computing settings.

View Article and Find Full Text PDF

A recent study design for clinical trials with small sample sizes is the small n, sequential, multiple assignment, randomized trial (snSMART). An snSMART design has been previously proposed to compare the efficacy of two dose levels versus placebo. In such a trial, participants are initially randomized to receive either low dose, high dose or placebo in stage 1.

View Article and Find Full Text PDF

Childhood nutrition plays an important role in the promotion of long-term health. Introducing solid foods in alignment with the Mediterranean Diet during weaning fosters a preference for healthy foods early in life. However, access to nutritious diets remains a challenge in underserved communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!