With the increasing resistance of many Gram-negative bacteria to existing classes of antibiotics, identifying new paradigms in antimicrobial discovery is an important research priority. Of special interest are the proteins required for the biogenesis of the asymmetric Gram-negative bacterial outer membrane (OM). Seven Lpt proteins (LptA to LptG) associate in most Gram-negative bacteria to form a macromolecular complex spanning the entire envelope, which transports lipopolysaccharide (LPS) molecules from their site of assembly at the inner membrane to the cell surface, powered by adenosine 5'-triphosphate hydrolysis in the cytoplasm. The periplasmic protein LptA comprises the protein bridge across the periplasm, which connects LptBFGC at the inner membrane to LptD/E anchored in the OM. We show here that the naturally occurring, insect-derived antimicrobial peptide thanatin targets LptA and LptD in the network of periplasmic protein-protein interactions required to assemble the Lpt complex, leading to the inhibition of LPS transport and OM biogenesis in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235536PMC
http://dx.doi.org/10.1126/sciadv.aau2634DOI Listing

Publication Analysis

Top Keywords

thanatin targets
8
gram-negative bacteria
8
inner membrane
8
targets intermembrane
4
intermembrane protein
4
protein complex
4
complex required
4
required lipopolysaccharide
4
lipopolysaccharide transport
4
transport increasing
4

Similar Publications

Host defense antimicrobial peptides (AMPs) are promising lead molecules with which to develop antibiotics against drug-resistant bacterial pathogens. Thanatin, an inducible antimicrobial peptide involved in the host defense of insects, is gaining considerable attention in the generation of novel classes of antibiotics. Thanatin or thanatin-based analog peptides are extremely potent in killing bacterial pathogens in the Enterobacteriaceae family, including drug-resistant strains of and .

View Article and Find Full Text PDF

Atomistic Simulations and Analysis of Peripheral Membrane Proteins with Model Lipid Bilayers.

Methods Mol Biol

December 2024

Chemical and Biological Engineering Department, School of Engineering and Applied Sciences, State University of New York at Buffalo, Buffalo, NY, USA.

All-atom molecular dynamics (AAMD) is a computational technique that predicts the movement of particles based on the intermolecular forces acting on the system. It enables the study of biological systems at atomic detail, complements observations from experiments, and can help the selection of experimental targets. Here, we describe the applications of MD simulations to study the interaction between peripheral membrane proteins and lipid bilayers.

View Article and Find Full Text PDF

Endogenous antimicrobial peptides (AMPs) are evolutionarily ancient molecular factors of innate immunity that play a key role in host defense. The study of the diversity of animal defense peptides has important applications in the context of the growing global antimicrobial resistance. In this study using a transcriptome mining approach, we found three novel thanatin-like β-hairpin AMPs in the bean bug , named Rip-2, Rip-3, and Rip-4.

View Article and Find Full Text PDF

The Archetypal Gamma-Core Motif of Antimicrobial Cys-Rich Peptides Inhibits H-ATPases in Target Pathogens.

Int J Mol Sci

September 2024

Laboratory of Oral Microbiology (LMO), Clinical University of Odontology (CLUO), University of Oviedo, 33006 Oviedo, Asturias, Spain.

Human lactoferrin (hLf) is an innate host defense protein that inhibits microbial H-ATPases. This protein includes an ancestral structural motif (i.e.

View Article and Find Full Text PDF

Antimicrobial resistance poses an escalating threat to human health, necessitating the development of novel antimicrobial agents capable of addressing challenges posed by antibiotic-resistant bacteria. Thanatin, a 21-amino acid β-hairpin insect antimicrobial peptide featuring a single disulfide bond, exhibits broad-spectrum antibacterial activity, particularly effective against multidrug-resistant strains. The outer membrane biosynthesis system is recognized as a critical vulnerability in antibiotic-resistant bacteria, which thanatin targets to exert its antimicrobial effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!