Stochastic neural networks are a prototypical computational device able to build a probabilistic representation of an ensemble of external stimuli. Building on the relationship between inference and learning, we derive a synaptic plasticity rule that relies only on delayed activity correlations, and that shows a number of remarkable features. Our (DCM) rule satisfies some basic requirements for biological feasibility: finite and noisy afferent signals, Dale's principle and asymmetry of synaptic connections, locality of the weight update computations. Nevertheless, the DCM rule is capable of storing a large, extensive number of patterns as attractors in a stochastic recurrent neural network, under general scenarios without requiring any modification: it can deal with correlated patterns, a broad range of architectures (with or without hidden neuronal states), one-shot learning with the palimpsest property, all the while avoiding the proliferation of spurious attractors. When hidden units are present, our learning rule can be employed to construct Boltzmann machine-like generative models, exploiting the addition of hidden neurons in feature extraction and classification tasks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6227809PMC
http://dx.doi.org/10.1098/rsfs.2018.0033DOI Listing

Publication Analysis

Top Keywords

learning rule
8
stochastic neural
8
neural networks
8
dcm rule
8
rule
5
statistical inference
4
inference differential
4
learning
4
differential learning
4
rule stochastic
4

Similar Publications

Background And Aims: Infertility, as defined by the World Health Organization, is the inability to conceive after 12 months of regular, unprotected intercourse. This study aimed to identify factors influencing infertility by applying data mining techniques, specifically rule-mining methods, to analyze diverse patient data and uncover relevant insights. This approach involves a thorough analysis of patients' clinical characteristics, dietary habits, and overall conditions to identify complex patterns and relationships that may contribute to infertility.

View Article and Find Full Text PDF

Objective: This study aimed to derive a clinical prediction rule (CPR) that can predict changes in health-related quality of life at 5 months for patients with knee osteoarthritis (KOA) undergoing conservative treatment.

Methods: Patients with KOA receiving physical therapy and exercise therapy at an outpatient clinic were included in this study. The basic characteristics, medical information, and motor function test results were recorded at baseline.

View Article and Find Full Text PDF

Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records.

Int J Med Inform

January 2025

Rheumatology and Allergy Clinical Epidemiology Research Center and Division of Rheumatology, Allergy, and Immunology, and Mongan Institute, Department of Medicine, Massachusetts General Hospital Boston MA USA. Electronic address:

Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.

View Article and Find Full Text PDF

Early identification of dropouts during the special forces selection program.

Sci Rep

January 2025

Department of Psychology, Faculty of Behavioural and Social Sciences, University of Groningen, Grote Kruisstraat 2/1, 9712TS, Groningen, The Netherlands.

Recruits are exposed to high levels of psychological and physical stress during the special forces selection period, resulting in dropout rates of up to 80%. To identify who likely drops out, we assessed a group of 249 recruits, every week of the selection program, on their self-efficacy, motivation, experienced psychological and physical stress, and recovery. Using linear regression as well as state-of-the-art machine learning techniques, we aimed to build a model that could meaningfully predict dropout while remaining interpretable.

View Article and Find Full Text PDF

This research introduces an innovative approach to optimal control for a class of linear systems with input saturation. It leverages the synergy of Takagi-Sugeno (T-S) fuzzy models and reinforcement learning (RL) techniques. To enhance interpretability and analytical accessibility, our approach applies T-S models to approximate the value function and generate optimal control laws while incorporating prior knowledge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!