The design of vesicle microsystems as artificial cells (bottom-up synthetic biology) has traditionally relied on the incorporation of molecular components to impart functionality. These cell mimics have reduced capabilities compared with their engineered biological counterparts (top-down synthetic biology), as they lack the powerful metabolic and regulatory pathways associated with living systems. There is increasing scope for using whole intact cellular components as functional modules artificial cells, as a route to increase the capabilities of artificial cells. In this feasibility study, we design and embed genetically engineered microbes () in a vesicle-based cell mimic and use them as biosensing modules for real-time monitoring of lactate in the external environment. Using this conceptual framework, the functionality of other microbial devices can be conferred into vesicle microsystems in the future, bridging the gap between bottom-up and top-down synthetic biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6227772PMC
http://dx.doi.org/10.1098/rsfs.2018.0024DOI Listing

Publication Analysis

Top Keywords

artificial cells
12
synthetic biology
12
vesicle microsystems
8
top-down synthetic
8
functionalizing cell-mimetic
4
cell-mimetic giant
4
giant vesicles
4
vesicles encapsulated
4
encapsulated bacterial
4
bacterial biosensors
4

Similar Publications

Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) has reached a significant level of maturity in biology, demonstrated by the diversity of modes for obtaining not only topographical images but also insightful mechanical and adhesion data by performing force measurements on delicate samples with a controlled environment (e.g., liquid, temperature, pH).

View Article and Find Full Text PDF

Protocol for visualizing the chromatin assembly properties of epigenetic protein complexes via an HTM module-mediated artificial tethering system.

STAR Protoc

January 2025

School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, P.R. China. Electronic address:

The detailed chromatin assembly processes for many epigenetic regulatory complexes are largely unknown. Here, we present a protocol utilizing heterochromatin-targeting module (HTM) module-mediated chromatin tethering followed by microscopy-based visualization to detect the recruitment priority between two components in Polycomb repressive complex 1 (PRC1). Moreover, we detail procedures for detecting the resultant histone-modifying activities of PRC1 using immunofluorescence (IF) analyses.

View Article and Find Full Text PDF

scHNTL: single-cell RNA-seq data clustering augmented by high-order neighbors and triplet loss.

Bioinformatics

January 2025

School of Computing and Artificial Intelligence, Southwest Jiaotong University, Sichuan 611756, China.

Motivation: The rapid development of single-cell RNA sequencing (scRNA-seq) has significantly advanced biomedical research. Clustering analysis, crucial for scRNA-seq data, faces challenges including data sparsity, high dimensionality, and variable gene expressions. Better low-dimensional embeddings for these complex data should maintain intrinsic information while making similar data close and dissimilar data distant.

View Article and Find Full Text PDF

iPSCs can serve as a renewable source of a consistent edited cell product, overcoming limitations of primary cells. While feeder-free generation of clinical grade iPSC-derived CD8 T cells has been achieved, differentiation of iPSC-derived CD4sp and regulatory T cells requires mouse stromal cells in an artificial thymic organoid. Here we report a serum- and feeder-free differentiation process suitable for large-scale production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!