Design of Potent Inhibitors for Human Brain Memapsin 2 (-Secretase).

J Am Chem Soc

Protein Studies Program, Oklahoma Medical Research Foundation and Department of Biochemistry and Molecular Biology, UniVersity of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.

Published: April 2000

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233310PMC
http://dx.doi.org/10.1021/ja000300gDOI Listing

Publication Analysis

Top Keywords

design potent
4
potent inhibitors
4
inhibitors human
4
human brain
4
brain memapsin
4
memapsin -secretase
4
design
1
inhibitors
1
human
1
brain
1

Similar Publications

Development of multifunctional fluorescence-emitting potential theranostic agents for Alzheimer's disease.

Talanta

January 2025

Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India. Electronic address:

The cholinergic deficits and amyloid beta (Aβ) aggregation are the mainstream simultaneously observed pathologies during the progression of Alzheimer's disease (AD). Deposited Aβ plaques are considered to be the primary pathological hallmarks of AD and are contemplated as promising diagnostic biomarker. Herein, a series of novel theranostic agents were designed, synthesised and evaluated against cholinesterase (ChEs) enzymes and detection of Aβ species, which are major targets for development of therapeutics for AD.

View Article and Find Full Text PDF

Designing an anticancer Pd(II) complex as poly(ADP-ribose) polymerase 1 inhibitor.

Int J Biol Macromol

January 2025

School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:

Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.

View Article and Find Full Text PDF

Synthesis and biological assessment of BUB1B inhibitors for the treatment of clear cell renal cell carcinoma.

Eur J Med Chem

January 2025

Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE, 17165, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK. Electronic address:

Clear cell renal cell carcinoma (ccRCC) presents substantial therapeutic challenges due to its molecular heterogeneity, limited response to conventional therapies, and widespread drug resistance. Recent advancements in molecular research have identified novel targets, such as BUB1B, which has been identified through global transcriptomic profiling and gene co-expression network analysis as critical in ccRCC progression. In this study, we synthesized 40 novel derivatives of TG-101209 to modulate BUB1B expression and activity, leading to the induction of apoptosis in Caki-1 cells.

View Article and Find Full Text PDF

In this study, we have designed and developed a cationic bolaform C12-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)2 (C12(DDUPAC)2) that is derived from biocompatible molecules. The bolaform C12(DDUPAC)2 has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C12-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)2 (C12(DUAC)2) of its precursor molecule.

View Article and Find Full Text PDF

Small Molecular Oligopeptides Adorned with Tryptophan Residues as Potent Antitumor Agents: Design, Synthesis, Bioactivity Assay, Computational Prediction, and Experimental Validation.

J Chem Inf Model

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.

Tryptophan participates in important life activities and is involved in various metabolic processes. The indole and aromatic binuclear ring structure in tryptophan can engage in diverse interactions, including π-π, π-alkyl, hydrogen bonding, cation-π, and CH-π interactions with other side chains and protein targets. These interactions offer extensive opportunities for drug development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!