Radiation-induced bystander effect (RIBE) is a poorly understood phenomenon wherein non-targeted cells exhibit effects of radiation. We have reported that cell-free chromatin (cfCh) particles that are released from dying cells can integrate into genomes of surrounding healthy cells to induce DNA damage and inflammation. This raised the possibility that RIBE might be induced by cfCh released from irradiated dying cells. When conditioned media from BrdU-labeled irradiated cells were passed through filters of pore size 0.22 µm and incubated with unexposed cells, BrdU-labeled cfCh particles could be seen to readily enter their nuclei to activate H2AX, active Caspase-3, NFκB, and IL-6. A direct relationship was observed with respect to activation of RIBE biomarkers and radiation dose in the range of 0.1-0 Gy. We confirmed by FISH and cytogenetic analysis that cfCh had stably integrated into chromosomes of bystander cells and had led to extensive chromosomal instability. The above RIBE effects could be abrogated when conditioned media were pre-treated with agents that inactivate cfCh, namely, anti-histone antibody complexed nanoparticles (CNPs), DNase I and a novel DNA degrading agent Resveratrol-copper (R-Cu). Lower hemi-body irradiation with γ-rays (0.1-50 Gy) led to activation of H2AX, active Caspase-3, NFκB, and IL-6 in brain cells in a dose-dependent manner. Activation of these RIBE biomarkers could be abrogated by concurrent treatment with CNPs, DNase I and R-Cu indicating that activation of RIBE was not due to radiation scatter to the brain. RIBE activation was seen even when mini-beam radiation was delivered to the umbilical region of mice wherein radiation scatter to brain was negligible and could be abrogated by cfCh inactivating agents. These results indicate that cfCh released from radiation-induced dying cells are activators of RIBE and that it can be prevented by treatment with appropriate cfCh inactivating agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238009PMC
http://dx.doi.org/10.1038/s41419-018-1181-xDOI Listing

Publication Analysis

Top Keywords

dying cells
16
activation ribe
12
cells
10
radiation-induced bystander
8
agents inactivate
8
cell-free chromatin
8
released irradiated
8
irradiated dying
8
ribe
8
cfch
8

Similar Publications

Spatially restricted and ontogenically distinct hepatic macrophages are required for tissue repair.

Immunity

January 2025

Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium. Electronic address:

Our understanding of the functional heterogeneity of resident versus recruited macrophages in the diseased liver is limited. A population of recruited lipid-associated macrophages (LAMs) has been reported to populate the diseased liver alongside resident Kupffer cells (KCs). However, the precise roles of these distinct macrophage subsets remain elusive.

View Article and Find Full Text PDF

Copper Imparts a New Therapeutic Property to Resveratrol by Generating ROS to Deactivate Cell-Free Chromatin.

Pharmaceuticals (Basel)

January 2025

Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India.

Resveratrol, a bioactive phytoalexin, has been extensively studied as a pharmaceutical and nutraceutical candidate for the treatment of various diseases. Although its therapeutic effects have been largely attributed to its anti-oxidant properties, its underlying mechanisms and dose dependency are not well understood. Recent studies have shown that cell-free chromatin particles (cfChPs), which are released daily from billions of dying cells, can enter circulation and be internalized by healthy cells, wherein they trigger various damaging effects, including double-strand DNA breaks.

View Article and Find Full Text PDF

Neutral lipids restrict the mobility of broken DNA molecules during comet assays.

Biol Cell

January 2025

Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, Montpellier, France.

One widespread technique to assess in relative terms the amount of broken DNA present in the genome of individual cells consists of immobilizing the cell's nucleus under an agarose pad (called the nucleoid) and subjecting the whole genome to electrophoresis to force broken DNA molecules out of it. Since the migrating broken DNA molecules create a tail behind the nucleoid, this technique is named the comet assay. While performing comet assays regularly, we systematically observed circular regions devoid of DNA within the nucleoid region.

View Article and Find Full Text PDF

Heterocyclic aromatic amines (HAAs), formed during the cooking of meat, are potential human carcinogens, underscoring the need for long-lived biomarkers to assess exposure and cancer risk. Frequent consumption of well-done meats containing 2-amino-1-methyl-6-phenylimidazo[4,5-]pyridine (PhIP), a prevalent HAA that is a prostatic carcinogen in rodents and DNA-damaging agent in human prostate cells, has been linked to aggressive prostate cancer (PC) pathology. African American (AA) men face nearly twice the risk for developing and dying from PC compared to White men.

View Article and Find Full Text PDF

Inhibition of PDT-induced PGE2 surge for enhanced photo-immunotherapy.

Biomaterials

January 2025

College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, PR China.

Nowadays, photodynamic therapy (PDT) offers a non-invasive tumor treatment with high safety profiles and minimal side effects, implying a promising clinical application for patients with malignant tumors. However, the lack of efficacy in metastasis and recurrence still notably limits its application. To solve this problem, one promising strategy is to improve the immune response activated by PDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!