The applications of the pH low insertion peptide (pHLIP) in cancer diagnosis and cross-membrane cargo delivery have drawn increasing attention in the past decade. With its origin as the transmembrane (TM) helix C of bacteriorhodopsin, pHLIP is also an important model for understanding how pH can affect the folding and topogenesis of a TM α-helix. Protonations of multiple D/E residues transform pHLIP from an unstructured coil at membrane surface (known as state II, at pH ≥ 7) to a TM α-helix (state III, pH ≤ 5.3). While these initial and end states of pHLIP insertion have been firmly established, what happens at the intervening pH values is less clear. However, the intervening pH range is most relevant to pHLIP-cell interactions in the acidic extracellular tumor environment (and in the endosomes within cells). Here, using advanced solid-state NMR spectroscopy with palmitoyl-2-oleoyl--glycerol-3-phosphocholine unilamellar vesicles as the model membrane, we systematically examined the state of pHLIP-membrane interactions (in terms of the membrane locations of D/E residues, as well as lipid dynamics) at the intervening pH values of 6.4, 6.1, and 5.8, along with the known states at pH 7.4 and 5.3. Thermodynamic intermediate states distinct from the initial and end states were discovered to exist at each of the intervening pH examined. They support a multistage model of pHLIP insertion in which the D/E titrations occur in a defined sequence at distinct intermediate pH values. This multistage model has important ramifications in pHLIP applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275479PMC
http://dx.doi.org/10.1073/pnas.1809190115DOI Listing

Publication Analysis

Top Keywords

solid-state nmr
8
nmr spectroscopy
8
d/e residues
8
initial states
8
phlip insertion
8
intervening values
8
multistage model
8
phlip
7
ph-dependent thermodynamic
4
thermodynamic intermediates
4

Similar Publications

In this study, we explore the structural intricacies of cellulose, a polymer composed of glucose monomers arranged in a linear chain, primarily investigated through solid-state NMR techniques. Specifically, we employ low-field proton nuclear magnetic resonance (H-NMR) to delve into the diverse hydrogen atom types within the cellulose molecule. The low-field H-NMR technique allows us to discern these hydrogen atoms based on their distinct chemical shifts, providing valuable insights into the various functional groups present in cellulose.

View Article and Find Full Text PDF

In this work, we investigate the development of polymer electrolytes for sodium batteries based on sulfonamide functional polymer nanoparticles (NaNPs). The synthesis of the polymer NaNPs is carried out by emulsion copolymerization of methyl methacrylate and sodium sulfonamide methacrylate in the presence of a crosslinker, resulting in particle sizes of 50 nm, as shown by electron microscopy. Then, gel polymer electrolytes are prepared by mixing polymer NPs and different organic plasticizers including carbonates, glymes, sulfolanes and ionic liquids.

View Article and Find Full Text PDF

Exploring redox-active electrolytes to boost energy density of carbon-based supercapacitors.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018 China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China. Electronic address:

To boost supercapacitor (SC) energy density, we introduced redox-active molecules into an aqueous HSO electrolyte. Using retrosynthetic analysis, we identified aminoquinones, specifically triaminochlorobenzoquinone (TACBQ), as promising candidates. Characterization via elemental analysis, Fourier Transform Infrared Spectrometer (FT-IR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) confirmed structure of TACBQ.

View Article and Find Full Text PDF

Constructing highly conjugated three-dimensional covalent organic frameworks (3D COFs), particularly those with luminescent features, remains a significant challenge. In this work, we successfully synthesized a 3D COF, named 3D-Py-SP-COF, using a rigid and orthogonal spirobifluorene building block for the spatial 3D structure construction and planar pyrene as luminescent units. The incorporation of the pyrene and the unique rigid 3D network structure endow 3D-Py-SP-COF with fluorescent properties.

View Article and Find Full Text PDF

NMR spectroscopy presents boundless opportunities for understanding the structure, dynamics, and function for a broad range of scientific applications. Solid-state NMR (SSNMR), in particular, provides novel insights into biological and material systems that are not amenable to other approaches. However, a major bottleneck is the extent of user training and the difficulty of obtaining reproducible, high-quality experimental results, especially for the sophisticated multidimensional pulse sequences that are essential to provide site-resolved measurements in large biomolecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!