The extreme learning machine (ELM) has attracted much attention over the past decade due to its fast learning speed and convincing generalization performance. However, there still remains a practical issue to be approached when applying the ELM: the randomly generated hidden node parameters without tuning can lead to the hidden node outputs being nonuniformly distributed, thus giving rise to poor generalization performance. To address this deficiency, a novel activation function with an affine transformation (AT) on its input is introduced into the ELM, which leads to an improved ELM algorithm that is referred to as an AT-ELM in this paper. The scaling and translation parameters of the AT activation function are computed based on the maximum entropy principle in such a way that the hidden layer outputs approximately obey a uniform distribution. Application of the AT-ELM algorithm in nonlinear function regression shows its robustness to the range scaling of the network inputs. Experiments on nonlinear function regression, real-world data set classification, and benchmark image recognition demonstrate better performance for the AT-ELM compared with the original ELM, the regularized ELM, and the kernel ELM. Recognition results on benchmark image data sets also reveal that the AT-ELM outperforms several other state-of-the-art algorithms in general.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2018.2877468DOI Listing

Publication Analysis

Top Keywords

activation function
12
extreme learning
8
learning machine
8
affine transformation
8
generalization performance
8
hidden node
8
nonlinear function
8
function regression
8
benchmark image
8
elm
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!