Many plants, such as Mimosa pudica (the "sensitive plant"), employ electrochemical signals known as action potentials (APs) for rapid intercellular communication. In this paper, we consider a reaction-diffusion model of individual AP signals to analyze APs from a communication- and information-theoretic perspective. We use concepts from molecular communication to explain the underlying process of information transfer in a plant for a single AP pulse that is shared with one or more receiver cells. We also use the chemical Langevin equation to accommodate the deterministic as well as stochastic component of the system. Finally, we present an information-theoretic analysis of single action potentials, obtaining achievable information rates for these signals. We show that, in general, the presence of an AP signal can increase the mutual information and information propagation speed among neighboring cells with receivers in different settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNB.2018.2880924 | DOI Listing |
MAbs
December 2025
Biotherapeutics and Genetic Medicine, AbbVie, South San Francisco, CA, USA.
Testing of candidate monoclonal antibody therapeutics in preclinical models is an essential step in drug development. Identification of antibody therapeutic candidates that bind their human targets and cross-react to mouse orthologs is often challenging, especially for targets with low sequence homology. In such cases, surrogate antibodies that bind mouse orthologs must be used.
View Article and Find Full Text PDFHealth Res Policy Syst
January 2025
Center for Clinical Research and Prevention, Health Promotion and Prevention, Frederiksberg Hospital, Frederiksberg, Denmark.
Background: Childhood obesity is a preventable global public health challenge, increasingly recognized as a complex problem, stemming from complex drivers. Obesity is characterized by multiple interdependencies and diverse influences at different societal levels. Tackling childhood obesity calls for a holistic approach that engages with complexity and recognizes that there is no single "magic bullet" intervention to prevent obesity.
View Article and Find Full Text PDFSci Rep
January 2025
Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-University of Barcelona), Rosselló 149-153, Barcelona, 08036, Spain.
We recently characterized the potent antiplasmodial activity of the aggregated protein dye YAT2150, whose presumed mode of action is the inhibition of protein aggregation in the malaria parasite. Using single-dose and ramping methods, assays were done to select Plasmodium falciparum parasites resistant to YAT2150 concentrations ranging from 3× to 0.25× the in vitro IC of the compound (in the two-digit nM range) and performed a cross-resistance assessment in P.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, US.
The opioid crisis, driven by synthetic opioids like fentanyl, demands innovative solutions. The opioid antidote naloxone has a short action ( ~ 1 hour), requiring repeated doses. To address this, we present a new and simple naloxone prodrug delivery system repurposing a hydrophilic derivative of acoramidis, a potent transthyretin ligand.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Xi'an 710032, China.
To investigate the bone augmentation effects of domestic decellularized porcine small intestinal submucosa (PSIS) absorbable biomembrane and domestic bovine pericardium tissue (BPT) absorbable biomembrane in guided bone regeneration (GBR) for single-tooth implantation in diabetic patients. A prospective case-control study was conducted with 48 diabetic patients who received single-tooth implant restoration at the Department of Prosthodontics, School of Stomatology. The Fourth Military Medical University, between January 2023 and January 2024.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!